Abstract:A quintessential feature of human intelligence is the ability to create ad hoc conventions over time to achieve shared goals efficiently. We investigate how communication strategies evolve through repeated collaboration as people coordinate on shared procedural abstractions. To this end, we conducted an online unimodal study (n = 98) using natural language to probe abstraction hierarchies. In a follow-up lab study (n = 40), we examined how multimodal communication (speech and gestures) changed during physical collaboration. Pairs used augmented reality to isolate their partner's hand and voice; one participant viewed a 3D virtual tower and sent instructions to the other, who built the physical tower. Participants became faster and more accurate by establishing linguistic and gestural abstractions and using cross-modal redundancy to emphasize key changes from previous interactions. Based on these findings, we extend probabilistic models of convention formation to multimodal settings, capturing shifts in modality preferences. Our findings and model provide building blocks for designing convention-aware intelligent agents situated in the physical world.
Abstract:Multimodal scene search of conversations is essential for unlocking valuable insights into social dynamics and enhancing our communication. While experts in conversational analysis have their own knowledge and skills to find key scenes, a lack of comprehensive, user-friendly tools that streamline the processing of diverse multimodal queries impedes efficiency and objectivity. To solve it, we developed Providence, a visual-programming-based tool based on design considerations derived from a formative study with experts. It enables experts to combine various machine learning algorithms to capture human behavioral cues without writing code. Our study showed its preferable usability and satisfactory output with less cognitive load imposed in accomplishing scene search tasks of conversations, verifying the importance of its customizability and transparency. Furthermore, through the in-the-wild trial, we confirmed the objectivity and reusability of the tool transform experts' workflow, suggesting the advantage of expert-AI teaming in a highly human-contextual domain.