What is Table Detection? Table detection is the process of identifying and extracting tables from documents or images.
Papers and Code
Sep 02, 2024
Abstract:To accurately understand engineering drawings, it is essential to establish the correspondence between images and their description tables within the drawings. Existing document understanding methods predominantly focus on text as the main modality, which is not suitable for documents containing substantial image information. In the field of visual relation detection, the structure of the task inherently limits its capacity to assess relationships among all entity pairs in the drawings. To address this issue, we propose a vision-based relation detection model, named ViRED, to identify the associations between tables and circuits in electrical engineering drawings. Our model mainly consists of three parts: a vision encoder, an object encoder, and a relation decoder. We implement ViRED using PyTorch to evaluate its performance. To validate the efficacy of ViRED, we conduct a series of experiments. The experimental results indicate that, within the engineering drawing dataset, our approach attained an accuracy of 96\% in the task of relation prediction, marking a substantial improvement over existing methodologies. The results also show that ViRED can inference at a fast speed even when there are numerous objects in a single engineering drawing.
* 8 pages, 5 figures
Via

Aug 19, 2024
Abstract:Obtaining annotated table structure data for complex tables is a challenging task due to the inherent diversity and complexity of real-world document layouts. The scarcity of publicly available datasets with comprehensive annotations for intricate table structures hinders the development and evaluation of models designed for such scenarios. This research paper introduces a novel approach for generating annotated images for table structure by leveraging conditioned mask images of rows and columns through the application of latent diffusion models. The proposed method aims to enhance the quality of synthetic data used for training object detection models. Specifically, the study employs a conditioning mechanism to guide the generation of complex document table images, ensuring a realistic representation of table layouts. To evaluate the effectiveness of the generated data, we employ the popular YOLOv5 object detection model for training. The generated table images serve as valuable training samples, enriching the dataset with diverse table structures. The model is subsequently tested on the challenging pubtables-1m testset, a benchmark for table structure recognition in complex document layouts. Experimental results demonstrate that the introduced approach significantly improves the quality of synthetic data for training, leading to YOLOv5 models with enhanced performance. The mean Average Precision (mAP) values obtained on the pubtables-1m testset showcase results closely aligned with state-of-the-art methods. Furthermore, low FID results obtained on the synthetic data further validate the efficacy of the proposed methodology in generating annotated images for table structure.
* Accepted in ICDAR 2024
Via

Aug 23, 2024
Abstract:With advancements in Large Language Models (LLMs), a major use case that has emerged is querying databases in plain English, translating user questions into executable database queries, which has improved significantly. However, real-world datasets often feature a vast array of attributes and complex values, complicating the LLMs task of accurately identifying relevant columns or values from natural language queries. Traditional methods cannot fully relay the datasets size and complexity to the LLM. To address these challenges, we propose a novel framework that leverages Full-Text Search (FTS) on the input table. This approach not only enables precise detection of specific values and columns but also narrows the search space for language models, thereby enhancing query accuracy. Additionally, it supports a custom auto-complete feature that suggests queries based on the data in the table. This integration significantly refines the interaction between the user and complex datasets, offering a sophisticated solution to the limitations faced by current table querying capabilities. This work is accompanied by an application for both Mac and Windows platforms, which readers can try out themselves on their own data.
* 13 pages, 4 figures
Via

Oct 04, 2024
Abstract:Synthesizing relational data has started to receive more attention from researchers, practitioners, and industry. The task is more difficult than synthesizing a single table due to the added complexity of relationships between tables. For the same reason, benchmarking methods for synthesizing relational data introduces new challenges. Our work is motivated by a lack of an empirical evaluation of state-of-the-art methods and by gaps in the understanding of how such an evaluation should be done. We review related work on relational data synthesis, common benchmarking datasets, and approaches to measuring the fidelity and utility of synthetic data. We combine the best practices and a novel robust detection approach into a benchmarking tool and use it to compare six methods, including two commercial tools. While some methods are better than others, no method is able to synthesize a dataset that is indistinguishable from original data. For utility, we typically observe moderate correlation between real and synthetic data for both model predictive performance and feature importance.
Via

Jul 23, 2024
Abstract:Cross-domain Aspect Sentiment Triplet Extraction (ASTE) aims to extract fine-grained sentiment elements from target domain sentences by leveraging the knowledge acquired from the source domain. Due to the absence of labeled data in the target domain, recent studies tend to rely on pre-trained language models to generate large amounts of synthetic data for training purposes. However, these approaches entail additional computational costs associated with the generation process. Different from them, we discover a striking resemblance between table-filling methods in ASTE and two-stage Object Detection (OD) in computer vision, which inspires us to revisit the cross-domain ASTE task and approach it from an OD standpoint. This allows the model to benefit from the OD extraction paradigm and region-level alignment. Building upon this premise, we propose a novel method named \textbf{T}able-\textbf{F}illing via \textbf{M}ean \textbf{T}eacher (TFMT). Specifically, the table-filling methods encode the sentence into a 2D table to detect word relations, while TFMT treats the table as a feature map and utilizes a region consistency to enhance the quality of those generated pseudo labels. Additionally, considering the existence of the domain gap, a cross-domain consistency based on Maximum Mean Discrepancy is designed to alleviate domain shift problems. Our method achieves state-of-the-art performance with minimal parameters and computational costs, making it a strong baseline for cross-domain ASTE.
* Accepted by CIKM2024
Via

Jul 12, 2024
Abstract:Spreadsheets, with their extensive two-dimensional grids, various layouts, and diverse formatting options, present notable challenges for large language models (LLMs). In response, we introduce SpreadsheetLLM, pioneering an efficient encoding method designed to unleash and optimize LLMs' powerful understanding and reasoning capability on spreadsheets. Initially, we propose a vanilla serialization approach that incorporates cell addresses, values, and formats. However, this approach was limited by LLMs' token constraints, making it impractical for most applications. To tackle this challenge, we develop SheetCompressor, an innovative encoding framework that compresses spreadsheets effectively for LLMs. It comprises three modules: structural-anchor-based compression, inverse index translation, and data-format-aware aggregation. It significantly improves performance in spreadsheet table detection task, outperforming the vanilla approach by 25.6% in GPT4's in-context learning setting. Moreover, fine-tuned LLM with SheetCompressor has an average compression ratio of 25 times, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%. Finally, we propose Chain of Spreadsheet for downstream tasks of spreadsheet understanding and validate in a new and demanding spreadsheet QA task. We methodically leverage the inherent layout and structure of spreadsheets, demonstrating that SpreadsheetLLM is highly effective across a variety of spreadsheet tasks.
Via

May 20, 2024
Abstract:Table structure recognition (TSR) aims to parse the inherent structure of a table from its input image. The `"split-and-merge" paradigm is a pivotal approach to parse table structure, where the table separation line detection is crucial. However, challenges such as wireless and deformed tables make it demanding. In this paper, we adhere to the "split-and-merge" paradigm and propose SEMv3 (SEM: Split, Embed and Merge), a method that is both fast and robust for detecting table separation lines. During the split stage, we introduce a Keypoint Offset Regression (KOR) module, which effectively detects table separation lines by directly regressing the offset of each line relative to its keypoint proposals. Moreover, in the merge stage, we define a series of merge actions to efficiently describe the table structure based on table grids. Extensive ablation studies demonstrate that our proposed KOR module can detect table separation lines quickly and accurately. Furthermore, on public datasets (e.g. WTW, ICDAR-2019 cTDaR Historical and iFLYTAB), SEMv3 achieves state-of-the-art (SOTA) performance. The code is available at https://github.com/Chunchunwumu/SEMv3.
* 9 pages, 6 figures, 5 tables. Accepted by IJCAI2024 main track
Via

Oct 09, 2024
Abstract:Embeddings are now used to underpin a wide variety of data management tasks, including entity resolution, dataset search and semantic type detection. Such applications often involve datasets with numerical columns, but there has been more emphasis placed on the semantics of categorical data in embeddings than on the distinctive features of numerical data. In this paper, we propose a method called Gem (Gaussian mixture model embeddings) that creates embeddings that build on numerical value distributions from columns. The proposed method specializes a Gaussian Mixture Model (GMM) to identify and cluster columns with similar value distributions. We introduce a signature mechanism that generates a probability matrix for each column, indicating its likelihood of belonging to specific Gaussian components, which can be used for different applications, such as to determine semantic types. Finally, we generate embeddings for three numerical data properties: distributional, statistical, and contextual. Our core method focuses solely on numerical columns without using table names or neighboring columns for context. However, the method can be combined with other types of evidence, and we later integrate attribute names with the Gaussian embeddings to evaluate the method's contribution to improving overall performance. We compare Gem with several baseline methods for numeric only and numeric + context tasks, showing that Gem consistently outperforms the baselines on four benchmark datasets.
Via

Sep 06, 2024
Abstract:While large multimodal models (LMMs) have obtained strong performance on many multimodal tasks, they may still hallucinate while generating text. Their performance on detecting salient features from visual data is also unclear. In this paper, we develop a framework to generate faithful and salient text from mixed-modal data, which includes images and structured data ( represented in knowledge graphs or tables). Specifically, we train a small vision critic model to identify hallucinated and non-salient features from the image modality. The critic model also generates a list of salient image features. This information is used in the post editing step to improve the generation quality. Experiments on two datasets show that our framework improves LMMs' generation quality on both faithfulness and saliency, outperforming recent techniques aimed at reducing hallucination.
Via

May 08, 2024
Abstract:Table detection, a pivotal task in document analysis, aims to precisely recognize and locate tables within document images. Although deep learning has shown remarkable progress in this realm, it typically requires an extensive dataset of labeled data for proficient training. Current CNN-based semi-supervised table detection approaches use the anchor generation process and Non-Maximum Suppression (NMS) in their detection process, limiting training efficiency. Meanwhile, transformer-based semi-supervised techniques adopted a one-to-one match strategy that provides noisy pseudo-labels, limiting overall efficiency. This study presents an innovative transformer-based semi-supervised table detector. It improves the quality of pseudo-labels through a novel matching strategy combining one-to-one and one-to-many assignment techniques. This approach significantly enhances training efficiency during the early stages, ensuring superior pseudo-labels for further training. Our semi-supervised approach is comprehensively evaluated on benchmark datasets, including PubLayNet, ICADR-19, and TableBank. It achieves new state-of-the-art results, with a mAP of 95.7% and 97.9% on TableBank (word) and PubLaynet with 30% label data, marking a 7.4 and 7.6 point improvement over previous semi-supervised table detection approach, respectively. The results clearly show the superiority of our semi-supervised approach, surpassing all existing state-of-the-art methods by substantial margins. This research represents a significant advancement in semi-supervised table detection methods, offering a more efficient and accurate solution for practical document analysis tasks.
* ICDAR-IJDAR 2024
Via
