Department of Computer Science, University of Kaiserslautern-Landau, Kaiserslautern, Rhineland-Palatinate, Germany, German Research Center for Artificial Intelligence, DFKI GmbH, Kaiserslautern, Rhineland-Palatinate, Germany
Abstract:Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
Abstract:Early diagnosis of plant diseases is critical for global food safety, yet most AI solutions lack the generalization required for real-world agricultural diversity. These models are typically constrained to specific species, failing to perform accurately across the broad spectrum of cultivated plants. To address this gap, we first introduce the FloraSyntropy Archive, a large-scale dataset of 178,922 images across 35 plant species, annotated with 97 distinct disease classes. We establish a benchmark by evaluating numerous existing models on this archive, revealing a significant performance gap. We then propose FloraSyntropy-Net, a novel federated learning framework (FL) that integrates a Memetic Algorithm (MAO) for optimal base model selection (DenseNet201), a novel Deep Block for enhanced feature representation, and a client-cloning strategy for scalable, privacy-preserving training. FloraSyntropy-Net achieves a state-of-the-art accuracy of 96.38% on the FloraSyntropy benchmark. Crucially, to validate its generalization capability, we test the model on the unrelated multiclass Pest dataset, where it demonstrates exceptional adaptability, achieving 99.84% accuracy. This work provides not only a valuable new resource but also a robust and highly generalizable framework that advances the field towards practical, large-scale agricultural AI applications.
Abstract:Remote sensing provides satellite data in diverse types and formats. The usage of multimodal learning networks exploits this diversity to improve model performance, except that the complexity of such networks comes at the expense of their interpretability. In this study, we explore how modalities can be leveraged through multitask learning to intrinsically explain model behavior. In particular, instead of additional inputs, we use certain modalities as additional targets to be predicted along with the main task. The success of this approach relies on the rich information content of satellite data, which remains as input modalities. We show how this modeling context provides numerous benefits: (1) in case of data scarcity, the additional modalities do not need to be collected for model inference at deployment, (2) the model performance remains comparable to the multimodal baseline performance, and in some cases achieves better scores, (3) prediction errors in the main task can be explained via the model behavior in the auxiliary task(s). We demonstrate the efficiency of our approach on three datasets, including segmentation, classification, and regression tasks. Code available at git.opendfki.de/hiba.najjar/mtl_explainability/.
Abstract:Multimodal learning enables various machine learning tasks to benefit from diverse data sources, effectively mimicking the interplay of different factors in real-world applications, particularly in agriculture. While the heterogeneous nature of involved data modalities may necessitate the design of complex architectures, the model interpretability is often overlooked. In this study, we leverage the intrinsic explainability of Transformer-based models to explain multimodal learning networks, focusing on the task of crop yield prediction at the subfield level. The large datasets used cover various crops, regions, and years, and include four different input modalities: multispectral satellite and weather time series, terrain elevation maps and soil properties. Based on the self-attention mechanism, we estimate feature attributions using two methods, namely the Attention Rollout (AR) and Generic Attention (GA), and evaluate their performance against Shapley-based model-agnostic estimations, Shapley Value Sampling (SVS). Additionally, we propose the Weighted Modality Activation (WMA) method to assess modality attributions and compare it with SVS attributions. Our findings indicate that Transformer-based models outperform other architectures, specifically convolutional and recurrent networks, achieving R2 scores that are higher by 0.10 and 0.04 at the subfield and field levels, respectively. AR is shown to provide more robust and reliable temporal attributions, as confirmed through qualitative and quantitative evaluation, compared to GA and SVS values. Information about crop phenology stages was leveraged to interpret the explanation results in the light of established agronomic knowledge. Furthermore, modality attributions revealed varying patterns across the two methods compared.[...]
Abstract:As black-box AI-driven decision-making systems become increasingly widespread in modern document processing workflows, improving their transparency and reliability has become critical, especially in high-stakes applications where biases or spurious correlations in decision-making could lead to serious consequences. One vital component often found in such document processing workflows is document image classification, which, despite its widespread use, remains difficult to explain. While some recent works have attempted to explain the decisions of document image classification models through feature-importance maps, these maps are often difficult to interpret and fail to provide insights into the global features learned by the model. In this paper, we aim to bridge this research gap by introducing generative document counterfactuals that provide meaningful insights into the model's decision-making through actionable explanations. In particular, we propose DocVCE, a novel approach that leverages latent diffusion models in combination with classifier guidance to first generate plausible in-distribution visual counterfactual explanations, and then performs hierarchical patch-wise refinement to search for a refined counterfactual that is closest to the target factual image. We demonstrate the effectiveness of our approach through a rigorous qualitative and quantitative assessment on 3 different document classification datasets -- RVL-CDIP, Tobacco3482, and DocLayNet -- and 3 different models -- ResNet, ConvNeXt, and DiT -- using well-established evaluation criteria such as validity, closeness, and realism. To the best of the authors' knowledge, this is the first work to explore generative counterfactual explanations in document image analysis.
Abstract:The framework is designed to improve performance in the analysis of combined as well as single anatomical perspectives for MRI disease diagnosis. It specifically addresses the performance degradation observed in state-of-the-art (SOTA) models, particularly when processing axial, coronal, and sagittal anatomical planes. The paper introduces the FOLC-Net framework, which incorporates a novel federated-optimized lightweight architecture with approximately 1.217 million parameters and a storage requirement of only 0.9 MB. FOLC-Net integrates Manta-ray foraging optimization (MRFO) mechanisms for efficient model structure generation, global model cloning for scalable training, and ConvNeXt for enhanced client adaptability. The model was evaluated on combined multi-view data as well as individual views, such as axial, coronal, and sagittal, to assess its robustness in various medical imaging scenarios. Moreover, FOLC-Net tests a ShallowFed model on different data to evaluate its ability to generalize beyond the training dataset. The results show that FOLC-Net outperforms existing models, particularly in the challenging sagittal view. For instance, FOLC-Net achieved an accuracy of 92.44% on the sagittal view, significantly higher than the 88.37% accuracy of study method (DL + Residual Learning) and 88.95% of DL models. Additionally, FOLC-Net demonstrated improved accuracy across all individual views, providing a more reliable and robust solution for medical image analysis in decentralized environments. FOLC-Net addresses the limitations of existing SOTA models by providing a framework that ensures better adaptability to individual views while maintaining strong performance in multi-view settings. The incorporation of MRFO, global model cloning, and ConvNeXt ensures that FOLC-Net performs better in real-world medical applications.
Abstract:Modern AI systems frequently rely on opaque black-box models, most notably Deep Neural Networks, whose performance stems from complex architectures with millions of learned parameters. While powerful, their complexity poses a major challenge to trustworthiness, particularly due to a lack of transparency. Explainable AI (XAI) addresses this issue by providing human-understandable explanations of model behavior. However, to ensure their usefulness and trustworthiness, such explanations must be rigorously evaluated. Despite the growing number of XAI methods, the field lacks standardized evaluation protocols and consensus on appropriate metrics. To address this gap, we conduct a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and introduce a unified framework for the eValuation of XAI (VXAI). We identify 362 relevant publications and aggregate their contributions into 41 functionally similar metric groups. In addition, we propose a three-dimensional categorization scheme spanning explanation type, evaluation contextuality, and explanation quality desiderata. Our framework provides the most comprehensive and structured overview of VXAI to date. It supports systematic metric selection, promotes comparability across methods, and offers a flexible foundation for future extensions.
Abstract:Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
Abstract:When using Large Language Models (LLMs) to support Knowledge Graph Engineering (KGE), one of the first indications when searching for an appropriate model is its size. According to the scaling laws, larger models typically show higher capabilities. However, in practice, resource costs are also an important factor and thus it makes sense to consider the ratio between model performance and costs. The LLM-KG-Bench framework enables the comparison of LLMs in the context of KGE tasks and assesses their capabilities of understanding and producing KGs and KG queries. Based on a dataset created in an LLM-KG-Bench run covering 26 open state-of-the-art LLMs, we explore the model size scaling laws specific to KGE tasks. In our analyses, we assess how benchmark scores evolve between different model size categories. Additionally, we inspect how the general score development of single models and families of models correlates to their size. Our analyses revealed that, with a few exceptions, the model size scaling laws generally also apply to the selected KGE tasks. However, in some cases, plateau or ceiling effects occurred, i.e., the task performance did not change much between a model and the next larger model. In these cases, smaller models could be considered to achieve high cost-effectiveness. Regarding models of the same family, sometimes larger models performed worse than smaller models of the same family. These effects occurred only locally. Hence it is advisable to additionally test the next smallest and largest model of the same family.
Abstract:Concept-based explanations have emerged as an effective approach within Explainable Artificial Intelligence, enabling interpretable insights by aligning model decisions with human-understandable concepts. However, existing methods rely on computationally intensive procedures and struggle to efficiently capture complex, semantic concepts. Recently, the Concept Discovery through Latent Diffusion-based Counterfactual Trajectories (CDCT) framework, introduced by Varshney et al. (2025), attempts to identify concepts via dimension-wise traversal of the latent space of a Variational Autoencoder trained on counterfactual trajectories. Extending the CDCT framework, this work introduces Concept Directions via Latent Clustering (CDLC), which extracts global, class-specific concept directions by clustering latent difference vectors derived from factual and diffusion-generated counterfactual image pairs. CDLC substantially reduces computational complexity by eliminating the exhaustive latent dimension traversal required in CDCT and enables the extraction of multidimensional semantic concepts encoded across the latent dimensions. This approach is validated on a real-world skin lesion dataset, demonstrating that the extracted concept directions align with clinically recognized dermoscopic features and, in some cases, reveal dataset-specific biases or unknown biomarkers. These results highlight that CDLC is interpretable, scalable, and applicable across high-stakes domains and diverse data modalities.