Department of Computer Science, University of Kaiserslautern-Landau, Kaiserslautern, Rhineland-Palatinate, Germany, German Research Center for Artificial Intelligence, DFKI GmbH, Kaiserslautern, Rhineland-Palatinate, Germany
Abstract:Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
Abstract:When using Large Language Models (LLMs) to support Knowledge Graph Engineering (KGE), one of the first indications when searching for an appropriate model is its size. According to the scaling laws, larger models typically show higher capabilities. However, in practice, resource costs are also an important factor and thus it makes sense to consider the ratio between model performance and costs. The LLM-KG-Bench framework enables the comparison of LLMs in the context of KGE tasks and assesses their capabilities of understanding and producing KGs and KG queries. Based on a dataset created in an LLM-KG-Bench run covering 26 open state-of-the-art LLMs, we explore the model size scaling laws specific to KGE tasks. In our analyses, we assess how benchmark scores evolve between different model size categories. Additionally, we inspect how the general score development of single models and families of models correlates to their size. Our analyses revealed that, with a few exceptions, the model size scaling laws generally also apply to the selected KGE tasks. However, in some cases, plateau or ceiling effects occurred, i.e., the task performance did not change much between a model and the next larger model. In these cases, smaller models could be considered to achieve high cost-effectiveness. Regarding models of the same family, sometimes larger models performed worse than smaller models of the same family. These effects occurred only locally. Hence it is advisable to additionally test the next smallest and largest model of the same family.
Abstract:Concept-based explanations have emerged as an effective approach within Explainable Artificial Intelligence, enabling interpretable insights by aligning model decisions with human-understandable concepts. However, existing methods rely on computationally intensive procedures and struggle to efficiently capture complex, semantic concepts. Recently, the Concept Discovery through Latent Diffusion-based Counterfactual Trajectories (CDCT) framework, introduced by Varshney et al. (2025), attempts to identify concepts via dimension-wise traversal of the latent space of a Variational Autoencoder trained on counterfactual trajectories. Extending the CDCT framework, this work introduces Concept Directions via Latent Clustering (CDLC), which extracts global, class-specific concept directions by clustering latent difference vectors derived from factual and diffusion-generated counterfactual image pairs. CDLC substantially reduces computational complexity by eliminating the exhaustive latent dimension traversal required in CDCT and enables the extraction of multidimensional semantic concepts encoded across the latent dimensions. This approach is validated on a real-world skin lesion dataset, demonstrating that the extracted concept directions align with clinically recognized dermoscopic features and, in some cases, reveal dataset-specific biases or unknown biomarkers. These results highlight that CDLC is interpretable, scalable, and applicable across high-stakes domains and diverse data modalities.
Abstract:Medical disease prediction, particularly through imaging, remains a challenging task due to the complexity and variability of medical data, including noise, ambiguity, and differing image quality. Recent deep learning models, including Knowledge Distillation (KD) methods, have shown promising results in brain tumor image identification but still face limitations in handling uncertainty and generalizing across diverse medical conditions. Traditional KD methods often rely on a context-unaware temperature parameter to soften teacher model predictions, which does not adapt effectively to varying uncertainty levels present in medical images. To address this issue, we propose a novel framework that integrates Ant Colony Optimization (ACO) for optimal teacher-student model selection and a novel context-aware predictor approach for temperature scaling. The proposed context-aware framework adjusts the temperature based on factors such as image quality, disease complexity, and teacher model confidence, allowing for more robust knowledge transfer. Additionally, ACO efficiently selects the most appropriate teacher-student model pair from a set of pre-trained models, outperforming current optimization methods by exploring a broader solution space and better handling complex, non-linear relationships within the data. The proposed framework is evaluated using three publicly available benchmark datasets, each corresponding to a distinct medical imaging task. The results demonstrate that the proposed framework significantly outperforms current state-of-the-art methods, achieving top accuracy rates: 98.01% on the MRI brain tumor (Kaggle) dataset, 92.81% on the Figshare MRI dataset, and 96.20% on the GastroNet dataset. This enhanced performance is further evidenced by the improved results, surpassing existing benchmarks of 97.24% (Kaggle), 91.43% (Figshare), and 95.00% (GastroNet).
Abstract:Generative models have revolutionized multiple domains, yet their application to tabular data remains underexplored. Evaluating generative models for tabular data presents unique challenges due to structural complexity, large-scale variability, and mixed data types, making it difficult to intuitively capture intricate patterns. Existing evaluation metrics offer only partial insights, lacking a comprehensive measure of generative performance. To address this limitation, we propose three novel evaluation metrics: FAED, FPCAD, and RFIS. Our extensive experimental analysis, conducted on three standard network intrusion detection datasets, compares these metrics with established evaluation methods such as Fidelity, Utility, TSTR, and TRTS. Our results demonstrate that FAED effectively captures generative modeling issues overlooked by existing metrics. While FPCAD exhibits promising performance, further refinements are necessary to enhance its reliability. Our proposed framework provides a robust and practical approach for assessing generative models in tabular data applications.
Abstract:The remarkable success of Deep Learning approaches is often based and demonstrated on large public datasets. However, when applying such approaches to internal, private datasets, one frequently faces challenges arising from structural differences in the datasets, domain shift, and the lack of labels. In this work, we introduce Tabular Data Adapters (TDA), a novel method for generating soft labels for unlabeled tabular data in outlier detection tasks. By identifying statistically similar public datasets and transforming private data (based on a shared autoencoder) into a format compatible with state-of-the-art public models, our approach enables the generation of weak labels. It thereby can help to mitigate the cold start problem of labeling by basing on existing outlier detection models for public datasets. In experiments on 50 tabular datasets across different domains, we demonstrate that our method is able to provide more accurate annotations than baseline approaches while reducing computational time. Our approach offers a scalable, efficient, and cost-effective solution, to bridge the gap between public research models and real-world industrial applications.
Abstract:Missing instances in time series data impose a significant challenge to deep learning models, particularly in regression tasks. In the Earth Observation field, satellite failure or cloud occlusion frequently results in missing time-steps, introducing uncertainties in the predicted output and causing a decline in predictive performance. While many studies address missing time-steps through data augmentation to improve model robustness, the uncertainty arising at the input level is commonly overlooked. To address this gap, we introduce Monte Carlo Temporal Dropout (MC-TD), a method that explicitly accounts for input-level uncertainty by randomly dropping time-steps during inference using a predefined dropout ratio, thereby simulating the effect of missing data. To bypass the need for costly searches for the optimal dropout ratio, we extend this approach with Monte Carlo Concrete Temporal Dropout (MC-ConcTD), a method that learns the optimal dropout distribution directly. Both MC-TD and MC-ConcTD are applied during inference, leveraging Monte Carlo sampling for uncertainty quantification. Experiments on three EO time-series datasets demonstrate that MC-ConcTD improves predictive performance and uncertainty calibration compared to existing approaches. Additionally, we highlight the advantages of adaptive dropout tuning over manual selection, making uncertainty quantification more robust and accessible for EO applications.
Abstract:In this study, hypertension is utilized as an indicator of individual vascular damage. This damage can be identified through machine learning techniques, providing an early risk marker for potential major cardiovascular events and offering valuable insights into the overall arterial condition of individual patients. To this end, the VideoMAE deep learning model, originally developed for video classification, was adapted by finetuning for application in the domain of ultrasound imaging. The model was trained and tested using a dataset comprising over 31,000 carotid sonography videos sourced from the Gutenberg Health Study (15,010 participants), one of the largest prospective population health studies. This adaptation facilitates the classification of individuals as hypertensive or non-hypertensive (75.7% validation accuracy), functioning as a proxy for detecting visual arterial damage. We demonstrate that our machine learning model effectively captures visual features that provide valuable insights into an individual's overall cardiovascular health.
Abstract:Event cameras have higher temporal resolution, and require less storage and bandwidth compared to traditional RGB cameras. However, due to relatively lagging performance of event-based approaches, event cameras have not yet replace traditional cameras in performance-critical applications like autonomous driving. Recent approaches in event-based object detection try to bridge this gap by employing computationally expensive transformer-based solutions. However, due to their resource-intensive components, these solutions fail to exploit the sparsity and higher temporal resolution of event cameras efficiently. Moreover, these solutions are adopted from the vision domain, lacking specificity to the event cameras. In this work, we explore efficient and performant alternatives to recurrent vision transformer models and propose a novel event-based object detection backbone. The proposed backbone employs a novel Event Progression Extractor module, tailored specifically for event data, and uses Metaformer concept with convolution-based efficient components. We evaluate the resultant model on well-established traffic object detection benchmarks and conduct cross-dataset evaluation to test its ability to generalize. The proposed model outperforms the state-of-the-art on Prophesee Gen1 dataset by 1.6 mAP while reducing inference time by 14%. Our proposed EMF becomes the fastest DNN-based architecture in the domain by outperforming most efficient event-based object detectors. Moreover, the proposed model shows better ability to generalize to unseen data and scales better with the abundance of data.
Abstract:In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.