The growing popularity of Vision Transformers as the go-to models for image classification has led to an explosion of architectural modifications claiming to be more efficient than the original ViT. However, a wide diversity of experimental conditions prevents a fair comparison between all of them, based solely on their reported results. To address this gap in comparability, we conduct a comprehensive analysis of more than 30 models to evaluate the efficiency of vision transformers and related architectures, considering various performance metrics. Our benchmark provides a comparable baseline across the landscape of efficiency-oriented transformers, unveiling a plethora of surprising insights. For example, we discover that ViT is still Pareto optimal across multiple efficiency metrics, despite the existence of several alternative approaches claiming to be more efficient. Results also indicate that hybrid attention-CNN models fare particularly well when it comes to low inference memory and number of parameters, and also that it is better to scale the model size, than the image size. Furthermore, we uncover a strong positive correlation between the number of FLOPS and the training memory, which enables the estimation of required VRAM from theoretical measurements alone. Thanks to our holistic evaluation, this study offers valuable insights for practitioners and researchers, facilitating informed decisions when selecting models for specific applications. We publicly release our code and data at https://github.com/tobna/WhatTransformerToFavor
We introduce a simple yet effective early fusion method for crop yield prediction that handles multiple input modalities with different temporal and spatial resolutions. We use high-resolution crop yield maps as ground truth data to train crop and machine learning model agnostic methods at the sub-field level. We use Sentinel-2 satellite imagery as the primary modality for input data with other complementary modalities, including weather, soil, and DEM data. The proposed method uses input modalities available with global coverage, making the framework globally scalable. We explicitly highlight the importance of input modalities for crop yield prediction and emphasize that the best-performing combination of input modalities depends on region, crop, and chosen model.
This work introduces "You Only Diffuse Areas" (YODA), a novel method for partial diffusion in Single-Image Super-Resolution (SISR). The core idea is to utilize diffusion selectively on spatial regions based on attention maps derived from the low-resolution image and the current time step in the diffusion process. This time-dependent targeting enables a more effective conversion to high-resolution outputs by focusing on areas that benefit the most from the iterative refinement process, i.e., detail-rich objects. We empirically validate YODA by extending leading diffusion-based SISR methods SR3 and SRDiff. Our experiments demonstrate new state-of-the-art performance gains in face and general SR across PSNR, SSIM, and LPIPS metrics. A notable finding is YODA's stabilization effect on training by reducing color shifts, especially when induced by small batch sizes, potentially contributing to resource-constrained scenarios. The proposed spatial and temporal adaptive diffusion mechanism opens promising research directions, including developing enhanced attention map extraction techniques and optimizing inference latency based on sparser diffusion.
With a rapidly increasing amount and diversity of remote sensing (RS) data sources, there is a strong need for multi-view learning modeling. This is a complex task when considering the differences in resolution, magnitude, and noise of RS data. The typical approach for merging multiple RS sources has been input-level fusion, but other - more advanced - fusion strategies may outperform this traditional approach. This work assesses different fusion strategies for crop classification in the CropHarvest dataset. The fusion methods proposed in this work outperform models based on individual views and previous fusion methods. We do not find one single fusion method that consistently outperforms all other approaches. Instead, we present a comparison of multi-view fusion methods for three different datasets and show that, depending on the test region, different methods obtain the best performance. Despite this, we suggest a preliminary criterion for the selection of fusion methods.
This paper presents a retrospective overview of a decade of research in our department towards self-organizing personal knowledge assistants in evolving corporate memories. Our research is typically inspired by real-world problems and often conducted in interdisciplinary collaborations with research and industry partners. We summarize past experiments and results comprising topics like various ways of knowledge graph construction in corporate and personal settings, Managed Forgetting and (Self-organizing) Context Spaces as a novel approach to Personal Information Management (PIM) and knowledge work support. Past results are complemented by an overview of related work and some of our latest findings not published so far. Last, we give an overview of our related industry use cases including a detailed look into CoMem, a Corporate Memory based on our presented research already in productive use and providing challenges for further research. Many contributions are only first steps in new directions with still a lot of untapped potential, especially with regard to further increasing the automation in PIM and knowledge work support.
This work introduces Differential Wavelet Amplifier (DWA), a drop-in module for wavelet-based image Super-Resolution (SR). DWA invigorates an approach recently receiving less attention, namely Discrete Wavelet Transformation (DWT). DWT enables an efficient image representation for SR and reduces the spatial area of its input by a factor of 4, the overall model size, and computation cost, framing it as an attractive approach for sustainable ML. Our proposed DWA model improves wavelet-based SR models by leveraging the difference between two convolutional filters to refine relevant feature extraction in the wavelet domain, emphasizing local contrasts and suppressing common noise in the input signals. We show its effectiveness by integrating it into existing SR models, e.g., DWSR and MWCNN, and demonstrate a clear improvement in classical SR tasks. Moreover, DWA enables a direct application of DWSR and MWCNN to input image space, reducing the DWT representation channel-wise since it omits traditional DWT.
Deep learning has proven to be successful in various domains and for different tasks. However, when it comes to private data several restrictions are making it difficult to use deep learning approaches in these application fields. Recent approaches try to generate data privately instead of applying a privacy-preserving mechanism directly, on top of the classifier. The solution is to create public data from private data in a manner that preserves the privacy of the data. In this work, two very prominent GAN-based architectures were evaluated in the context of private time series classification. In contrast to previous work, mostly limited to the image domain, the scope of this benchmark was the time series domain. The experiments show that especially GSWGAN performs well across a variety of public datasets outperforming the competitor DPWGAN. An analysis of the generated datasets further validates the superiority of GSWGAN in the context of time series generation.
We present new Recurrent Neural Network (RNN) cells for image classification using a Neural Architecture Search (NAS) approach called DARTS. We are interested in the ReNet architecture, which is a RNN based approach presented as an alternative for convolutional and pooling steps. ReNet can be defined using any standard RNN cells, such as LSTM and GRU. One limitation is that standard RNN cells were designed for one dimensional sequential data and not for two dimensions like it is the case for image classification. We overcome this limitation by using DARTS to find new cell designs. We compare our results with ReNet that uses GRU and LSTM cells. Our found cells outperform the standard RNN cells on CIFAR-10 and SVHN. The improvements on SVHN indicate generalizability, as we derived the RNN cell designs from CIFAR-10 without performing a new cell search for SVHN.
This paper presents a novel Diffusion-Wavelet (DiWa) approach for Single-Image Super-Resolution (SISR). It leverages the strengths of Denoising Diffusion Probabilistic Models (DDPMs) and Discrete Wavelet Transformation (DWT). By enabling DDPMs to operate in the DWT domain, our DDPM models effectively hallucinate high-frequency information for super-resolved images on the wavelet spectrum, resulting in high-quality and detailed reconstructions in image space. Quantitatively, we outperform state-of-the-art diffusion-based SISR methods, namely SR3 and SRDiff, regarding PSNR, SSIM, and LPIPS on both face (8x scaling) and general (4x scaling) SR benchmarks. Meanwhile, using DWT enabled us to use fewer parameters than the compared models: 92M parameters instead of 550M compared to SR3 and 9.3M instead of 12M compared to SRDiff. Additionally, our method outperforms other state-of-the-art generative methods on classical general SR datasets while saving inference time. Finally, our work highlights its potential for various applications.