Department of Computer Science, University of Kaiserslautern-Landau, Kaiserslautern, Rhineland-Palatinate, Germany, German Research Center for Artificial Intelligence, DFKI GmbH, Kaiserslautern, Rhineland-Palatinate, Germany
Abstract:The availability of temporal geospatial data in multiple modalities has been extensively leveraged to enhance the performance of machine learning models. While efforts on the design of adequate model architectures are approaching a level of saturation, focusing on a data-centric perspective can complement these efforts to achieve further enhancements in data usage efficiency and model generalization capacities. This work contributes to this direction. We leverage model explanation methods to identify the features crucial for the model to reach optimal performance and the smallest set of features sufficient to achieve this performance. We evaluate our approach on three temporal multimodal geospatial datasets and compare multiple model explanation techniques. Our results reveal that some datasets can reach their optimal accuracy with less than 20% of the temporal instances, while in other datasets, the time series of a single band from a single modality is sufficient.
Abstract:Capturing pupil diameter is essential for assessing psychological and physiological states such as stress levels and cognitive load. However, the low resolution of images in eye datasets often hampers precise measurement. This study evaluates the impact of various upscaling methods, ranging from bicubic interpolation to advanced super-resolution, on pupil diameter predictions. We compare several pre-trained methods, including CodeFormer, GFPGAN, Real-ESRGAN, HAT, and SRResNet. Our findings suggest that pupil diameter prediction models trained on upscaled datasets are highly sensitive to the selected upscaling method and scale. Our results demonstrate that upscaling methods consistently enhance the accuracy of pupil diameter prediction models, highlighting the importance of upscaling in pupilometry. Overall, our work provides valuable insights for selecting upscaling techniques, paving the way for more accurate assessments in psychological and physiological research.
Abstract:Obtaining annotated table structure data for complex tables is a challenging task due to the inherent diversity and complexity of real-world document layouts. The scarcity of publicly available datasets with comprehensive annotations for intricate table structures hinders the development and evaluation of models designed for such scenarios. This research paper introduces a novel approach for generating annotated images for table structure by leveraging conditioned mask images of rows and columns through the application of latent diffusion models. The proposed method aims to enhance the quality of synthetic data used for training object detection models. Specifically, the study employs a conditioning mechanism to guide the generation of complex document table images, ensuring a realistic representation of table layouts. To evaluate the effectiveness of the generated data, we employ the popular YOLOv5 object detection model for training. The generated table images serve as valuable training samples, enriching the dataset with diverse table structures. The model is subsequently tested on the challenging pubtables-1m testset, a benchmark for table structure recognition in complex document layouts. Experimental results demonstrate that the introduced approach significantly improves the quality of synthetic data for training, leading to YOLOv5 models with enhanced performance. The mean Average Precision (mAP) values obtained on the pubtables-1m testset showcase results closely aligned with state-of-the-art methods. Furthermore, low FID results obtained on the synthetic data further validate the efficacy of the proposed methodology in generating annotated images for table structure.
Abstract:The emergence of federated learning (FL) presents a promising approach to leverage decentralized data while preserving privacy. Furthermore, the combination of FL and anomaly detection is particularly compelling because it allows for detecting rare and critical anomalies (usually also rare in locally gathered data) in sensitive data from multiple sources, such as cybersecurity and healthcare. However, benchmarking the performance of anomaly detection methods in FL environments remains an underexplored area. This paper introduces FedAD-Bench, a unified benchmark for evaluating unsupervised anomaly detection algorithms within the context of FL. We systematically analyze and compare the performance of recent deep learning anomaly detection models under federated settings, which were typically assessed solely in centralized settings. FedAD-Bench encompasses diverse datasets and metrics to provide a holistic evaluation. Through extensive experiments, we identify key challenges such as model aggregation inefficiencies and metric unreliability. We present insights into FL's regularization effects, revealing scenarios in which it outperforms centralized approaches due to its inherent ability to mitigate overfitting. Our work aims to establish a standardized benchmark to guide future research and development in federated anomaly detection, promoting reproducibility and fair comparison across studies.
Abstract:In this study, we introduce StylusAI, a novel architecture leveraging diffusion models in the domain of handwriting style generation. StylusAI is specifically designed to adapt and integrate the stylistic nuances of one language's handwriting into another, particularly focusing on blending English handwriting styles into the context of the German writing system. This approach enables the generation of German text in English handwriting styles and German handwriting styles into English, enriching machine-generated handwriting diversity while ensuring that the generated text remains legible across both languages. To support the development and evaluation of StylusAI, we present the \lq{Deutscher Handschriften-Datensatz}\rq~(DHSD), a comprehensive dataset encompassing 37 distinct handwriting styles within the German language. This dataset provides a fundamental resource for training and benchmarking in the realm of handwritten text generation. Our results demonstrate that StylusAI not only introduces a new method for style adaptation in handwritten text generation but also surpasses existing models in generating handwriting samples that improve both text quality and stylistic fidelity, evidenced by its performance on the IAM database and our newly proposed DHSD. Thus, StylusAI represents a significant advancement in the field of handwriting style generation, offering promising avenues for future research and applications in cross-linguistic style adaptation for languages with similar scripts.
Abstract:Generating high-resolution images with generative models has recently been made widely accessible by leveraging diffusion models pre-trained on large-scale datasets. Various techniques, such as MultiDiffusion and SyncDiffusion, have further pushed image generation beyond training resolutions, i.e., from square images to panorama, by merging multiple overlapping diffusion paths or employing gradient descent to maintain perceptual coherence. However, these methods suffer from significant computational inefficiencies due to generating and averaging numerous predictions, which is required in practice to produce high-quality and seamless images. This work addresses this limitation and presents a novel approach that eliminates the need to generate and average numerous overlapping denoising predictions. Our method shifts non-overlapping denoising windows over time, ensuring that seams in one timestep are corrected in the next. This results in coherent, high-resolution images with fewer overall steps. We demonstrate the effectiveness of our approach through qualitative and quantitative evaluations, comparing it with MultiDiffusion, SyncDiffusion, and StitchDiffusion. Our method offers several key benefits, including improved computational efficiency and faster inference times while producing comparable or better image quality.
Abstract:Multi-sensor ML models for EO aim to enhance prediction accuracy by integrating data from various sources. However, the presence of missing data poses a significant challenge, particularly in non-persistent sensors that can be affected by external factors. Existing literature has explored strategies like temporal dropout and sensor-invariant models to address the generalization to missing data issues. Inspired by these works, we study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI). Through experimentation on three multi-sensor temporal EO datasets, we demonstrate that these methods effectively increase the robustness of model predictions to missing sensors. Particularly, we focus on how the predictive performance of models drops when sensors are missing at different levels. We observe that ensemble multi-sensor models are the most robust to the lack of sensors. In addition, the sensor dropout component in ISensD shows promising robustness results.
Abstract:In this work, we introduce EyeDentify, a dataset specifically designed for pupil diameter estimation based on webcam images. EyeDentify addresses the lack of available datasets for pupil diameter estimation, a crucial domain for understanding physiological and psychological states traditionally dominated by highly specialized sensor systems such as Tobii. Unlike these advanced sensor systems and associated costs, webcam images are more commonly found in practice. Yet, deep learning models that can estimate pupil diameters using standard webcam data are scarce. By providing a dataset of cropped eye images alongside corresponding pupil diameter information, EyeDentify enables the development and refinement of models designed specifically for less-equipped environments, democratizing pupil diameter estimation by making it more accessible and broadly applicable, which in turn contributes to multiple domains of understanding human activity and supporting healthcare. Our dataset is available at https://vijulshah.github.io/eyedentify/.
Abstract:Crop yield forecasting plays a significant role in addressing growing concerns about food security and guiding decision-making for policymakers and farmers. When deep learning is employed, understanding the learning and decision-making processes of the models, as well as their interaction with the input data, is crucial for establishing trust in the models and gaining insight into their reliability. In this study, we focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany. Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps. We employ a long short-term memory network and investigate the impact of using different temporal samplings of the satellite data and the benefit of adding more relevant modalities. For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions. The modeling results show an improvement when adding more modalities or using all available instances of satellite data. The explainability results reveal distinct feature importance patterns for each crop and region. We further found that the most influential growth stages on the prediction are dependent on the temporal sampling of the input data. We demonstrated how these critical growth stages, which hold significant agronomic value, closely align with the existing literature in agronomy and crop development biology.
Abstract:Vegetation indices allow to efficiently monitor vegetation growth and agricultural activities. Previous generations of satellites were capturing a limited number of spectral bands, and a few expert-designed vegetation indices were sufficient to harness their potential. New generations of multi- and hyperspectral satellites can however capture additional bands, but are not yet efficiently exploited. In this work, we propose an explainable-AI-based method to select and design suitable vegetation indices. We first train a deep neural network using multispectral satellite data, then extract feature importance to identify the most influential bands. We subsequently select suitable existing vegetation indices or modify them to incorporate the identified bands and retrain our model. We validate our approach on a crop classification task. Our results indicate that models trained on individual indices achieve comparable results to the baseline model trained on all bands, while the combination of two indices surpasses the baseline in certain cases.