Hypothesis. Artificial general intelligence is, at its core, a compression problem. Effective compression demands resonance: deep learning scales best when its architecture aligns with the fundamental structure of the data. These are the fundamental principles. Yet, modern vision architectures have strayed from these truths: visual signals are highly redundant, while discriminative information, the surprise, is sparse. Current models process dense pixel grids uniformly, wasting vast compute on static background rather than focusing on the predictive residuals that define motion and meaning. We argue that to solve visual understanding, we must align our architectures with the information-theoretic principles of video, i.e., Codecs. Method. OneVision-Encoder encodes video by compressing predictive visual structure into semantic meaning. By adopting Codec Patchification, OV-Encoder abandons uniform computation to focus exclusively on the 3.1%-25% of regions rich in signal entropy. To unify spatial and temporal reasoning under irregular token layouts, OneVision-Encoder employs a shared 3D RoPE and is trained with a large-scale cluster discrimination objective over more than one million semantic concepts, jointly capturing object permanence and motion dynamics. Evidence. The results validate our core hypothesis: efficiency and accuracy are not a trade-off; they are positively correlated. When integrated into LLM, it consistently outperforms strong vision backbones such as Qwen3-ViT and SigLIP2 across 16 image, video, and document understanding benchmarks, despite using substantially fewer visual tokens and pretraining data. Notably, on video understanding tasks, OV-Encoder achieves an average improvement of 4.1% over Qwen3-ViT. Codec-aligned, patch-level sparsity is a foundational principle, enabling OV-Encoder as a scalable engine for next-generation visual generalists.
Machine learning methods have been successful in many areas, like image classification and natural language processing. However, it still needs to be determined how to apply ML to areas with mathematical constraints, like solving PDEs. Among various approaches to applying ML techniques to solving PDEs, the data-driven discretization method presents a promising way of accelerating and improving existing PDE solver on structured grids where it predicts the coefficients of quasi-linear stencils for computing values or derivatives of a function at given positions. It can improve the accuracy and stability of low-resolution simulation compared with using traditional finite difference or finite volume schemes. Meanwhile, it can also benefit from traditional numerical schemes like achieving conservation law by adapting finite volume type formulations. In this thesis, we have implemented the shallow water equation and Euler equation classic solver under a different framework. Experiments show that our classic solver performs much better than the Pyclaw solver. Then we propose four different deep neural networks for the ML-based solver. The results indicate that two of these approaches could output satisfactory solutions.
Human pose estimation is fundamental to intelligent perception in the Internet of Things (IoT), enabling applications ranging from smart healthcare to human-computer interaction. While WiFi-based methods have gained traction, they often struggle with continuous motion and high computational overhead. This work presents WiFlow, a novel framework for continuous human pose estimation using WiFi signals. Unlike vision-based approaches such as two-dimensional deep residual networks that treat Channel State Information (CSI) as images, WiFlow employs an encoder-decoder architecture. The encoder captures spatio-temporal features of CSI using temporal and asymmetric convolutions, preserving the original sequential structure of signals. It then refines keypoint features of human bodies to be tracked and capture their structural dependencies via axial attention. The decoder subsequently maps the encoded high-dimensional features into keypoint coordinates. Trained on a self-collected dataset of 360,000 synchronized CSI-pose samples from 5 subjects performing continuous sequences of 8 daily activities, WiFlow achieves a Percentage of Correct Keypoints (PCK) of 97.00% at a threshold of 20% (PCK@20) and 99.48% at PCK@50, with a mean per-joint position error of 0.008m. With only 4.82M parameters, WiFlow significantly reduces model complexity and computational cost, establishing a new performance baseline for practical WiFi-based human pose estimation. Our code and datasets are available at https://github.com/DY2434/WiFlow-WiFi-Pose-Estimation-with-Spatio-Temporal-Decoupling.git.
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
Accurate annotation of fixation type is a critical step in slide preparation for pathology laboratories. However, this manual process is prone to errors, impacting downstream analyses and diagnostic accuracy. Existing methods for verifying formalin-fixed, paraffin-embedded (FFPE), and frozen section (FS) fixation types typically require full-resolution whole-slide images (WSIs), limiting scalability for high-throughput quality control. We propose a deep-learning model to predict fixation types using low-resolution, pre-scan thumbnail images. The model was trained on WSIs from the TUM Institute of Pathology (n=1,200, Leica GT450DX) and evaluated on a class-balanced subset of The Cancer Genome Atlas dataset (TCGA, n=8,800, Leica AT2), as well as on class-balanced datasets from Augsburg (n=695 [392 FFPE, 303 FS], Philips UFS) and Regensburg (n=202, 3DHISTECH P1000). Our model achieves an AUROC of 0.88 on TCGA, outperforming comparable pre-scan methods by 4.8%. It also achieves AUROCs of 0.72 on Regensburg and Augsburg slides, underscoring challenges related to scanner-induced domain shifts. Furthermore, the model processes each slide in 21 ms, $400\times$ faster than existing high-magnification, full-resolution methods, enabling rapid, high-throughput processing. This approach provides an efficient solution for detecting labelling errors without relying on high-magnification scans, offering a valuable tool for quality control in high-throughput pathology workflows. Future work will improve and evaluate the model's generalisation to additional scanner types. Our findings suggest that this method can increase accuracy and efficiency in digital pathology workflows and may be extended to other low-resolution slide annotations.
While generative models have become powerful tools for image synthesis, they are typically optimized for executing carefully crafted textual prompts, offering limited support for the open-ended visual exploration that often precedes idea formation. In contrast, designers frequently draw inspiration from loosely connected visual references, seeking emergent connections that spark new ideas. We propose Inspiration Seeds, a generative framework that shifts image generation from final execution to exploratory ideation. Given two input images, our model produces diverse, visually coherent compositions that reveal latent relationships between inputs, without relying on user-specified text prompts. Our approach is feed-forward, trained on synthetic triplets of decomposed visual aspects derived entirely through visual means: we use CLIP Sparse Autoencoders to extract editing directions in CLIP latent space and isolate concept pairs. By removing the reliance on language and enabling fast, intuitive recombination, our method supports visual ideation at the early and ambiguous stages of creative work.
Composed image retrieval (CIR) requires complex reasoning over heterogeneous visual and textual constraints. Existing approaches largely fall into two paradigms: unified embedding retrieval, which suffers from single-model myopia, and heuristic agentic retrieval, which is limited by suboptimal, trial-and-error orchestration. To this end, we propose OSCAR, an optimization-steered agentic planning framework for composed image retrieval. We are the first to reformulate agentic CIR from a heuristic search process into a principled trajectory optimization problem. Instead of relying on heuristic trial-and-error exploration, OSCAR employs a novel offline-online paradigm. In the offline phase, we model CIR via atomic retrieval selection and composition as a two-stage mixed-integer programming problem, mathematically deriving optimal trajectories that maximize ground-truth coverage for training samples via rigorous boolean set operations. These trajectories are then stored in a golden library to serve as in-context demonstrations for online steering of VLM planner at online inference time. Extensive experiments on three public benchmarks and a private industrial benchmark show that OSCAR consistently outperforms SOTA baselines. Notably, it achieves superior performance using only 10% of training data, demonstrating strong generalization of planning logic rather than dataset-specific memorization.
Flow-based generative models have emerged as powerful priors for solving inverse problems. One option is to directly optimize the initial latent code (noise), such that the flow output solves the inverse problem. However, this requires backpropagating through the entire generative trajectory, incurring high memory costs and numerical instability. We propose MS-Flow, which represents the trajectory as a sequence of intermediate latent states rather than a single initial code. By enforcing the flow dynamics locally and coupling segments through trajectory-matching penalties, MS-Flow alternates between updating intermediate latent states and enforcing consistency with observed data. This reduces memory consumption while improving reconstruction quality. We demonstrate the effectiveness of MS-Flow over existing methods on image recovery and inverse problems, including inpainting, super-resolution, and computed tomography.
Integration of VLM reasoning with symbolic planning has proven to be a promising approach to real-world robot task planning. Existing work like UniDomain effectively learns symbolic manipulation domains from real-world demonstrations, described in Planning Domain Definition Language (PDDL), and has successfully applied them to real-world tasks. These domains, however, are restricted to tabletop manipulation. We propose UniPlan, a vision-language task planning system for long-horizon mobile-manipulation in large-scale indoor environments, that unifies scene topology, visuals, and robot capabilities into a holistic PDDL representation. UniPlan programmatically extends learned tabletop domains from UniDomain to support navigation, door traversal, and bimanual coordination. It operates on a visual-topological map, comprising navigation landmarks anchored with scene images. Given a language instruction, UniPlan retrieves task-relevant nodes from the map and uses a VLM to ground the anchored image into task-relevant objects and their PDDL states; next, it reconnects these nodes to a compressed, densely-connected topological map, also represented in PDDL, with connectivity and costs derived from the original map; Finally, a mobile-manipulation plan is generated using off-the-shelf PDDL solvers. Evaluated on human-raised tasks in a large-scale map with real-world imagery, UniPlan significantly outperforms VLM and LLM+PDDL planning in success rate, plan quality, and computational efficiency.
Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.