Human pose estimation is fundamental to intelligent perception in the Internet of Things (IoT), enabling applications ranging from smart healthcare to human-computer interaction. While WiFi-based methods have gained traction, they often struggle with continuous motion and high computational overhead. This work presents WiFlow, a novel framework for continuous human pose estimation using WiFi signals. Unlike vision-based approaches such as two-dimensional deep residual networks that treat Channel State Information (CSI) as images, WiFlow employs an encoder-decoder architecture. The encoder captures spatio-temporal features of CSI using temporal and asymmetric convolutions, preserving the original sequential structure of signals. It then refines keypoint features of human bodies to be tracked and capture their structural dependencies via axial attention. The decoder subsequently maps the encoded high-dimensional features into keypoint coordinates. Trained on a self-collected dataset of 360,000 synchronized CSI-pose samples from 5 subjects performing continuous sequences of 8 daily activities, WiFlow achieves a Percentage of Correct Keypoints (PCK) of 97.00% at a threshold of 20% (PCK@20) and 99.48% at PCK@50, with a mean per-joint position error of 0.008m. With only 4.82M parameters, WiFlow significantly reduces model complexity and computational cost, establishing a new performance baseline for practical WiFi-based human pose estimation. Our code and datasets are available at https://github.com/DY2434/WiFlow-WiFi-Pose-Estimation-with-Spatio-Temporal-Decoupling.git.