What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Jan 30, 2025
Abstract:Image animation has become a promising area in multimodal research, with a focus on generating videos from reference images. While prior work has largely emphasized generic video generation guided by text, music-driven dance video generation remains underexplored. In this paper, we introduce MuseDance, an innovative end-to-end model that animates reference images using both music and text inputs. This dual input enables MuseDance to generate personalized videos that follow text descriptions and synchronize character movements with the music. Unlike existing approaches, MuseDance eliminates the need for complex motion guidance inputs, such as pose or depth sequences, making flexible and creative video generation accessible to users of all expertise levels. To advance research in this field, we present a new multimodal dataset comprising 2,904 dance videos with corresponding background music and text descriptions. Our approach leverages diffusion-based methods to achieve robust generalization, precise control, and temporal consistency, setting a new baseline for the music-driven image animation task.
Via

Mar 04, 2025
Abstract:This paper introduces HarmonySet, a comprehensive dataset designed to advance video-music understanding. HarmonySet consists of 48,328 diverse video-music pairs, annotated with detailed information on rhythmic synchronization, emotional alignment, thematic coherence, and cultural relevance. We propose a multi-step human-machine collaborative framework for efficient annotation, combining human insights with machine-generated descriptions to identify key transitions and assess alignment across multiple dimensions. Additionally, we introduce a novel evaluation framework with tasks and metrics to assess the multi-dimensional alignment of video and music, including rhythm, emotion, theme, and cultural context. Our extensive experiments demonstrate that HarmonySet, along with the proposed evaluation framework, significantly improves the ability of multimodal models to capture and analyze the intricate relationships between video and music.
* Accepted at CVPR 2025. Project page: https://harmonyset.github.io/
Via

Feb 11, 2025
Abstract:Expressive music performance rendering involves interpreting symbolic scores with variations in timing, dynamics, articulation, and instrument-specific techniques, resulting in performances that capture musical can emotional intent. We introduce RenderBox, a unified framework for text-and-score controlled audio performance generation across multiple instruments, applying coarse-level controls through natural language descriptions and granular-level controls using music scores. Based on a diffusion transformer architecture and cross-attention joint conditioning, we propose a curriculum-based paradigm that trains from plain synthesis to expressive performance, gradually incorporating controllable factors such as speed, mistakes, and style diversity. RenderBox achieves high performance compared to baseline models across key metrics such as FAD and CLAP, and also tempo and pitch accuracy under different prompting tasks. Subjective evaluation further demonstrates that RenderBox is able to generate controllable expressive performances that sound natural and musically engaging, aligning well with prompts and intent.
Via

Mar 24, 2025
Abstract:This study examines pitch contours as a unifying semantic construct prevalent across various audio domains including music, speech, bioacoustics, and everyday sounds. Analyzing pitch contours offers insights into the universal role of pitch in the perceptual processing of audio signals and contributes to a deeper understanding of auditory mechanisms in both humans and animals. Conventional pitch-tracking methods, while optimized for music and speech, face challenges in handling much broader frequency ranges and more rapid pitch variations found in other audio domains. This study introduces a vision-based approach to pitch contour analysis that eliminates the need for explicit pitch-tracking. The approach uses a convolutional neural network, pre-trained for object detection in natural images and fine-tuned with a dataset of synthetically generated pitch contours, to extract key contour parameters from the time-frequency representation of short audio segments. A diverse set of eight downstream tasks from four audio domains were selected to provide a challenging evaluation scenario for cross-domain pitch contour analysis. The results show that the proposed method consistently surpasses traditional techniques based on pitch-tracking on a wide range of tasks. This suggests that the vision-based approach establishes a foundation for comparative studies of pitch contour characteristics across diverse audio domains.
Via

Jan 26, 2025
Abstract:Amphion is an open-source toolkit for Audio, Music, and Speech Generation, designed to lower the entry barrier for junior researchers and engineers in these fields. It provides a versatile framework that supports a variety of generation tasks and models. In this report, we introduce Amphion v0.2, the second major release developed in 2024. This release features a 100K-hour open-source multilingual dataset, a robust data preparation pipeline, and novel models for tasks such as text-to-speech, audio coding, and voice conversion. Furthermore, the report includes multiple tutorials that guide users through the functionalities and usage of the newly released models.
Via

Mar 10, 2025
Abstract:Conditional motion generation has been extensively studied in computer vision, yet two critical challenges remain. First, while masked autoregressive methods have recently outperformed diffusion-based approaches, existing masking models lack a mechanism to prioritize dynamic frames and body parts based on given conditions. Second, existing methods for different conditioning modalities often fail to integrate multiple modalities effectively, limiting control and coherence in generated motion. To address these challenges, we propose Motion Anything, a multimodal motion generation framework that introduces an Attention-based Mask Modeling approach, enabling fine-grained spatial and temporal control over key frames and actions. Our model adaptively encodes multimodal conditions, including text and music, improving controllability. Additionally, we introduce Text-Motion-Dance (TMD), a new motion dataset consisting of 2,153 pairs of text, music, and dance, making it twice the size of AIST++, thereby filling a critical gap in the community. Extensive experiments demonstrate that Motion Anything surpasses state-of-the-art methods across multiple benchmarks, achieving a 15% improvement in FID on HumanML3D and showing consistent performance gains on AIST++ and TMD. See our project website https://steve-zeyu-zhang.github.io/MotionAnything
Via

Feb 18, 2025
Abstract:While neural vocoders have made significant progress in high-fidelity speech synthesis, their application on polyphonic music has remained underexplored. In this work, we propose DisCoder, a neural vocoder that leverages a generative adversarial encoder-decoder architecture informed by a neural audio codec to reconstruct high-fidelity 44.1 kHz audio from mel spectrograms. Our approach first transforms the mel spectrogram into a lower-dimensional representation aligned with the Descript Audio Codec (DAC) latent space before reconstructing it to an audio signal using a fine-tuned DAC decoder. DisCoder achieves state-of-the-art performance in music synthesis on several objective metrics and in a MUSHRA listening study. Our approach also shows competitive performance in speech synthesis, highlighting its potential as a universal vocoder.
* Accepted at ICASSP 2025
Via

Feb 18, 2025
Abstract:Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .
Via

Mar 28, 2025
Abstract:Contrastive language-audio pre-training (CLAP) has addressed audio-language tasks such as audio-text retrieval by aligning audio and text in a common feature space. While CLAP addresses general audio-language tasks, its audio features do not generalize well in audio tasks. In contrast, self-supervised learning (SSL) models learn general-purpose audio features that perform well in diverse audio tasks. We pursue representation learning that can be widely used in audio applications and hypothesize that a method that learns both general audio features and CLAP features should achieve our goal, which we call a general-purpose audio-language representation. To implement our hypothesis, we propose M2D2, a second-generation masked modeling duo (M2D) that combines an SSL M2D and CLAP. M2D2 learns two types of features using two modalities (audio and text) in a two-stage training process. It also utilizes advanced LLM-based sentence embeddings in CLAP training for powerful semantic supervision. In the first stage, M2D2 learns generalizable audio features from M2D and CLAP, where CLAP aligns the features with the fine LLM-based semantic embeddings. In the second stage, it learns CLAP features using the audio features learned from the LLM-based embeddings. Through these pre-training stages, M2D2 should enhance generalizability and performance in its audio and CLAP features. Experiments validated that M2D2 achieves effective general-purpose audio-language representation, highlighted with SOTA fine-tuning mAP of 49.0 for AudioSet, SOTA performance in music tasks, and top-level performance in audio-language tasks.
* 15 pages, 7 figures, 13 tables, under review at an IEEE journal
Via

Jan 29, 2025
Abstract:Efficiently compressing high-dimensional audio signals into a compact and informative latent space is crucial for various tasks, including generative modeling and music information retrieval (MIR). Existing audio autoencoders, however, often struggle to achieve high compression ratios while preserving audio fidelity and facilitating efficient downstream applications. We introduce Music2Latent2, a novel audio autoencoder that addresses these limitations by leveraging consistency models and a novel approach to representation learning based on unordered latent embeddings, which we call summary embeddings. Unlike conventional methods that encode local audio features into ordered sequences, Music2Latent2 compresses audio signals into sets of summary embeddings, where each embedding can capture distinct global features of the input sample. This enables to achieve higher reconstruction quality at the same compression ratio. To handle arbitrary audio lengths, Music2Latent2 employs an autoregressive consistency model trained on two consecutive audio chunks with causal masking, ensuring coherent reconstruction across segment boundaries. Additionally, we propose a novel two-step decoding procedure that leverages the denoising capabilities of consistency models to further refine the generated audio at no additional cost. Our experiments demonstrate that Music2Latent2 outperforms existing continuous audio autoencoders regarding audio quality and performance on downstream tasks. Music2Latent2 paves the way for new possibilities in audio compression.
* Accepted to ICASSP 2025
Via
