What is facial recognition? Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Papers and Code
Jan 21, 2025
Abstract:Face recognition systems (FRS) exhibit significant accuracy differences based on the user's gender. Since such a gender gap reduces the trustworthiness of FRS, more recent efforts have tried to find the causes. However, these studies make use of manually selected, correlated, and small-sized sets of facial features to support their claims. In this work, we analyse gender bias in face recognition by successfully extending the search domain to decorrelated combinations of 40 non-demographic facial characteristics. First, we propose a toolchain to effectively decorrelate and aggregate facial attributes to enable a less-biased gender analysis on large-scale data. Second, we introduce two new fairness metrics to measure fairness with and without context. Based on these grounds, we thirdly present a novel unsupervised algorithm able to reliably identify attribute combinations that lead to vanishing bias when used as filter predicates for balanced testing datasets. The experiments show that the gender gap vanishes when images of male and female subjects share specific attributes, clearly indicating that the issue is not a question of biology but of the social definition of appearance. These findings could reshape our understanding of fairness in face biometrics and provide insights into FRS, helping to address gender bias issues.
Via

Mar 11, 2025
Abstract:With the advent of deep learning, expression recognition has made significant advancements. However, due to the limited availability of annotated compound expression datasets and the subtle variations of compound expressions, Compound Emotion Recognition (CE) still holds considerable potential for exploration. To advance this task, the 7th Affective Behavior Analysis in-the-wild (ABAW) competition introduces the Compound Expression Challenge based on C-EXPR-DB, a limited dataset without labels. In this paper, we present a curriculum learning-based framework that initially trains the model on single-expression tasks and subsequently incorporates multi-expression data. This design ensures that our model first masters the fundamental features of basic expressions before being exposed to the complexities of compound emotions. Specifically, our designs can be summarized as follows: 1) Single-Expression Pre-training: The model is first trained on datasets containing single expressions to learn the foundational facial features associated with basic emotions. 2) Dynamic Compound Expression Generation: Given the scarcity of annotated compound expression datasets, we employ CutMix and Mixup techniques on the original single-expression images to create hybrid images exhibiting characteristics of multiple basic emotions. 3) Incremental Multi-Expression Integration: After performing well on single-expression tasks, the model is progressively exposed to multi-expression data, allowing the model to adapt to the complexity and variability of compound expressions. The official results indicate that our method achieves the \textbf{best} performance in this competition track with an F-score of 0.6063. Our code is released at https://github.com/YenanLiu/ABAW7th.
* Accepted by ECCVWorkshop as the report of the first place in 7th ABAW
Track2 Competition
Via

Nov 18, 2024
Abstract:This study proposes a novel approach for real-time facial expression recognition utilizing short-range Frequency-Modulated Continuous-Wave (FMCW) radar equipped with one transmit (Tx), and three receive (Rx) antennas. The system leverages four distinct modalities simultaneously: Range-Doppler images (RDIs), micro range-Doppler Images (micro-RDIs), range azimuth images (RAIs), and range elevation images (REIs). Our innovative architecture integrates feature extractor blocks, intermediate feature extractor blocks, and a ResNet block to accurately classify facial expressions into smile, anger, neutral, and no-face classes. Our model achieves an average classification accuracy of 98.91% on the dataset collected using a 60 GHz short-range FMCW radar. The proposed solution operates in real-time in a person-independent manner, which shows the potential use of low-cost FMCW radars for effective facial expression recognition in various applications.
* Accepted at IEEE SENSORS 2024
Via

Nov 16, 2024
Abstract:Facial Emotion Recognition (FER) plays a crucial role in computer vision, with significant applications in human-computer interaction, affective computing, and areas such as mental health monitoring and personalized learning environments. However, a major challenge in FER task is the class imbalance commonly found in available datasets, which can hinder both model performance and generalization. In this paper, we tackle the issue of data imbalance by incorporating synthetic data augmentation and leveraging the ResEmoteNet model to enhance the overall performance on facial emotion recognition task. We employed Stable Diffusion 2 and Stable Diffusion 3 Medium models to generate synthetic facial emotion data, augmenting the training sets of the FER2013 and RAF-DB benchmark datasets. Training ResEmoteNet with these augmented datasets resulted in substantial performance improvements, achieving accuracies of 96.47% on FER2013 and 99.23% on RAF-DB. These findings shows an absolute improvement of 16.68% in FER2013, 4.47% in RAF-DB and highlight the efficacy of synthetic data augmentation in strengthening FER models and underscore the potential of advanced generative models in FER research and applications. The source code for ResEmoteNet is available at https://github.com/ArnabKumarRoy02/ResEmoteNet
* 5 pages, 4 tables, 4 figures, ICASSP 2025
Via

Mar 04, 2025
Abstract:This paper proposes FABG (Facial Affective Behavior Generation), an end-to-end imitation learning system for human-robot interaction, designed to generate natural and fluid facial affective behaviors. In interaction, effectively obtaining high-quality demonstrations remains a challenge. In this work, we develop an immersive virtual reality (VR) demonstration system that allows operators to perceive stereoscopic environments. This system ensures "the operator's visual perception matches the robot's sensory input" and "the operator's actions directly determine the robot's behaviors" - as if the operator replaces the robot in human interaction engagements. We propose a prediction-driven latency compensation strategy to reduce robotic reaction delays and enhance interaction fluency. FABG naturally acquires human interactive behaviors and subconscious motions driven by intuition, eliminating manual behavior scripting. We deploy FABG on a real-world 25-degree-of-freedom (DoF) humanoid robot, validating its effectiveness through four fundamental interaction tasks: expression response, dynamic gaze, foveated attention, and gesture recognition, supported by data collection and policy training. Project website: https://cybergenies.github.io
Via

Dec 01, 2024
Abstract:This study takes a preliminary step toward teaching computers to recognize human emotions through Facial Emotion Recognition (FER). Transfer learning is applied using ResNeXt, EfficientNet models, and an ArcFace model originally trained on the facial verification task, leveraging the AffectNet database, a collection of human face images annotated with corresponding emotions. The findings highlight the value of congruent domain transfer learning, the challenges posed by imbalanced datasets in learning facial emotion patterns, and the effectiveness of pairwise learning in addressing class imbalances to enhance model performance on the FER task.
Via

Nov 20, 2024
Abstract:Annotation ambiguity caused by the inherent subjectivity of visual judgment has always been a major challenge for Facial Expression Recognition (FER) tasks, particularly for largescale datasets from in-the-wild scenarios. A potential solution is the evaluation of relatively objective emotional distributions to help mitigate the ambiguity of subjective annotations. To this end, this paper proposes a novel Prior-based Objective Inference (POI) network. This network employs prior knowledge to derive a more objective and varied emotional distribution and tackles the issue of subjective annotation ambiguity through dynamic knowledge transfer. POI comprises two key networks: Firstly, the Prior Inference Network (PIN) utilizes the prior knowledge of AUs and emotions to capture intricate motion details. To reduce over-reliance on priors and facilitate objective emotional inference, PIN aggregates inferential knowledge from various key facial subregions, encouraging mutual learning. Secondly, the Target Recognition Network (TRN) integrates subjective emotion annotations and objective inference soft labels provided by the PIN, fostering an understanding of inherent facial expression diversity, thus resolving annotation ambiguity. Moreover, we introduce an uncertainty estimation module to quantify and balance facial expression confidence. This module enables a flexible approach to dealing with the uncertainties of subjective annotations. Extensive experiments show that POI exhibits competitive performance on both synthetic noisy datasets and multiple real-world datasets. All codes and training logs will be publicly available at https://github.com/liuhw01/POI.
Via

Nov 20, 2024
Abstract:Face recognition is a core task in computer vision designed to identify and authenticate individuals by analyzing facial patterns and features. This field intersects with artificial intelligence image processing and machine learning with applications in security authentication and personalization. Traditional approaches in facial recognition focus on capturing facial features like the eyes, nose and mouth and matching these against a database to verify identities. However challenges such as high false positive rates have persisted often due to the similarity among individuals facial features. Recently Contrastive Language Image Pretraining (CLIP) a model developed by OpenAI has shown promising advancements by linking natural language processing with vision tasks allowing it to generalize across modalities. Using CLIP's vision language correspondence and single-shot finetuning the model can achieve lower false positive rates upon deployment without the need of mass facial features extraction. This integration demonstrating CLIP's potential to address persistent issues in face recognition model performance without complicating our training paradigm.
Via

Nov 28, 2024
Abstract:Existing methods to generate aesthetic QR codes, such as image and style transfer techniques, tend to compromise either the visual appeal or the scannability of QR codes when they incorporate human face identity. Addressing these imperfections, we present Face2QR-a novel pipeline specifically designed for generating personalized QR codes that harmoniously blend aesthetics, face identity, and scannability. Our pipeline introduces three innovative components. First, the ID-refined QR integration (IDQR) seamlessly intertwines the background styling with face ID, utilizing a unified Stable Diffusion (SD)-based framework with control networks. Second, the ID-aware QR ReShuffle (IDRS) effectively rectifies the conflicts between face IDs and QR patterns, rearranging QR modules to maintain the integrity of facial features without compromising scannability. Lastly, the ID-preserved Scannability Enhancement (IDSE) markedly boosts scanning robustness through latent code optimization, striking a delicate balance between face ID, aesthetic quality and QR functionality. In comprehensive experiments, Face2QR demonstrates remarkable performance, outperforming existing approaches, particularly in preserving facial recognition features within custom QR code designs. Codes are available at $\href{https://github.com/cavosamir/Face2QR}{\text{this URL link}}$.
Via

Nov 25, 2024
Abstract:Recent advancements in diffusion models have made generative image editing more accessible, enabling creative edits but raising ethical concerns, particularly regarding malicious edits to human portraits that threaten privacy and identity security. Existing protection methods primarily rely on adversarial perturbations to nullify edits but often fail against diverse editing requests. We propose FaceLock, a novel approach to portrait protection that optimizes adversarial perturbations to destroy or significantly alter biometric information, rendering edited outputs biometrically unrecognizable. FaceLock integrates facial recognition and visual perception into perturbation optimization to provide robust protection against various editing attempts. We also highlight flaws in commonly used evaluation metrics and reveal how they can be manipulated, emphasizing the need for reliable assessments of protection. Experiments show FaceLock outperforms baselines in defending against malicious edits and is robust against purification techniques. Ablation studies confirm its stability and broad applicability across diffusion-based editing algorithms. Our work advances biometric defense and sets the foundation for privacy-preserving practices in image editing. The code is available at: https://github.com/taco-group/FaceLock.
Via
