Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Recent audio LLMs have emerged rapidly, demonstrating strong generalization across various speech tasks. However, given the inherent complexity of speech signals, these models inevitably suffer from performance degradation in specific target domains. To address this, we focus on enhancing audio LLMs in target domains without any labeled data. We propose a self-improvement method called SI-SDA, leveraging the information embedded in large-model decoding to evaluate the quality of generated pseudo labels and then perform domain adaptation based on reinforcement learning optimization. Experimental results show that our method consistently and significantly improves audio LLM performance, outperforming existing baselines in WER and BLEU across multiple public datasets of automatic speech recognition (ASR), spoken question-answering (SQA), and speech-to-text translation (S2TT). Furthermore, our approach exhibits high data efficiency, underscoring its potential for real-world deployment.



Voice Activity Detection (VAD) in the presence of background noise remains a challenging problem in speech processing. Accurate VAD is essential in automatic speech recognition, voice-to-text, conversational agents, etc, where noise can severely degrade the performance. A modern application includes the voice assistant, specially mounted on Artificial Intelligence of Things (AIoT) devices such as cell phones, smart glasses, earbuds, etc, where the voice signal includes background noise. Therefore, VAD modules must remain light-weight due to their practical on-device limitation. The existing models often struggle with low signal-to-noise ratios across diverse acoustic environments. A simple VAD often detects human voice in a clean environment, but struggles to detect the human voice in noisy conditions. We propose a noise-robust VAD that comprises a light-weight VAD, with data pre-processing and post-processing added modules to handle the background noise. This approach significantly enhances the VAD accuracy in noisy environments and requires neither a larger model, nor fine-tuning. Experimental results demonstrate that our approach achieves a notable improvement compared to baselines, particularly in environments with high background noise interference. This modified VAD additionally improving clean speech detection.




Motivated by a growing research interest into automatic speech recognition (ASR), and the growing body of work for languages in which code-switching (CS) often occurs, we present a systematic literature review of code-switching in end-to-end ASR models. We collect and manually annotate papers published in peer reviewed venues. We document the languages considered, datasets, metrics, model choices, and performance, and present a discussion of challenges in end-to-end ASR for code-switching. Our analysis thus provides insights on current research efforts and available resources as well as opportunities and gaps to guide future research.
With the rise of voice-enabled artificial intelligence (AI) systems, quantitative survey researchers have access to a new data-collection mode: AI telephone surveying. By using AI to conduct phone interviews, researchers can scale quantitative studies while balancing the dual goals of human-like interactivity and methodological rigor. Unlike earlier efforts that used interactive voice response (IVR) technology to automate these surveys, voice AI enables a more natural and adaptive respondent experience as it is more robust to interruptions, corrections, and other idiosyncrasies of human speech. We built and tested an AI system to conduct quantitative surveys based on large language models (LLM), automatic speech recognition (ASR), and speech synthesis technologies. The system was specifically designed for quantitative research, and strictly adhered to research best practices like question order randomization, answer order randomization, and exact wording. To validate the system's effectiveness, we deployed it to conduct two pilot surveys with the SSRS Opinion Panel and followed-up with a separate human-administered survey to assess respondent experiences. We measured three key metrics: the survey completion rates, break-off rates, and respondent satisfaction scores. Our results suggest that shorter instruments and more responsive AI interviewers may contribute to improvements across all three metrics studied.
Human communication involves more than explicit semantics, with implicit signals and contextual cues playing a critical role in shaping meaning. However, modern speech technologies, such as Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) often fail to capture these beyond-semantic dimensions. To better characterize and benchmark the progression of speech intelligence, we introduce Spoken Interaction System Capability Levels (L1-L5), a hierarchical framework illustrated the evolution of spoken dialogue systems from basic command recognition to human-like social interaction. To support these advanced capabilities, we propose Beyond-Semantic Speech (BoSS), which refers to the set of information in speech communication that encompasses but transcends explicit semantics. It conveys emotions, contexts, and modifies or extends meanings through multidimensional features such as affective cues, contextual dynamics, and implicit semantics, thereby enhancing the understanding of communicative intentions and scenarios. We present a formalized framework for BoSS, leveraging cognitive relevance theories and machine learning models to analyze temporal and contextual speech dynamics. We evaluate BoSS-related attributes across five different dimensions, reveals that current spoken language models (SLMs) are hard to fully interpret beyond-semantic signals. These findings highlight the need for advancing BoSS research to enable richer, more context-aware human-machine communication.
This paper presents Step-Audio 2, an end-to-end multi-modal large language model designed for industry-strength audio understanding and speech conversation. By integrating a latent audio encoder and reasoning-centric reinforcement learning (RL), Step-Audio 2 achieves promising performance in automatic speech recognition (ASR) and audio understanding. To facilitate genuine end-to-end speech conversation, Step-Audio 2 incorporates the generation of discrete audio tokens into language modeling, significantly enhancing its responsiveness to paralinguistic information such as speaking styles and emotions. To effectively leverage the rich textual and acoustic knowledge in real-world data, Step-Audio 2 integrates retrieval-augmented generation (RAG) and is able to call external tools such as web search to mitigate hallucination and audio search to switch timbres. Trained on millions of hours of speech and audio data, Step-Audio 2 delivers intelligence and expressiveness across diverse conversational scenarios. Evaluation results demonstrate that Step-Audio 2 achieves state-of-the-art performance on various audio understanding and conversational benchmarks compared to other open-source and commercial solutions. Please visit https://github.com/stepfun-ai/Step-Audio2 for more information.
Despite being spoken by millions of people, Tigrinya remains severely underrepresented in Natural Language Processing (NLP) research. This work presents a comprehensive survey of NLP research for Tigrinya, analyzing over 40 studies spanning more than a decade of work from 2011 to 2025. We systematically review the current state of computational resources, models, and applications across ten distinct downstream tasks, including morphological processing, machine translation, speech recognition, and question-answering. Our analysis reveals a clear trajectory from foundational, rule-based systems to modern neural architectures, with progress consistently unlocked by resource creation milestones. We identify key challenges rooted in Tigrinya's morphological complexity and resource scarcity, while highlighting promising research directions, including morphology-aware modeling, cross-lingual transfer, and community-centered resource development. This work serves as both a comprehensive reference for researchers and a roadmap for advancing Tigrinya NLP. A curated metadata of the surveyed studies and resources is made publicly available.\footnote{Tigrinya NLP Anthology: https://github.com/fgaim/tigrinya-nlp-anthology.
Developing narrative and comprehension skills in early childhood is critical for later literacy. However, teachers in large preschool classrooms struggle to accurately identify students who require intervention. We present a system for automatically assessing oral narratives of preschool children in Afrikaans and isiXhosa. The system uses automatic speech recognition followed by a machine learning scoring model to predict narrative and comprehension scores. For scoring predicted transcripts, we compare a linear model to a large language model (LLM). The LLM-based system outperforms the linear model in most cases, but the linear system is competitive despite its simplicity. The LLM-based system is comparable to a human expert in flagging children who require intervention. We lay the foundation for automatic oral assessments in classrooms, giving teachers extra capacity to focus on personalised support for children's learning.
Detailed assessment of language impairment following stroke remains a cognitively complex and clinician-intensive task, limiting timely and scalable diagnosis. Automatic Speech Recognition (ASR) foundation models offer a promising pathway to augment human evaluation through intelligent systems, but their effectiveness in the context of speech and language impairment remains uncertain. In this study, we evaluate whether Whisper, a state-of-the-art ASR foundation model, can be applied to transcribe and analyze speech from patients with stroke during a commonly used picture-naming task. We assess both verbatim transcription accuracy and the model's ability to support downstream prediction of language function, which has major implications for outcomes after stroke. Our results show that the baseline Whisper model performs poorly on single-word speech utterances. Nevertheless, fine-tuning Whisper significantly improves transcription accuracy (reducing Word Error Rate by 87.72% in healthy speech and 71.22% in speech from patients). Further, learned representations from the model enable accurate prediction of speech quality (average F1 Macro of 0.74 for healthy, 0.75 for patients). However, evaluations on an unseen (TORGO) dataset reveal limited generalizability, highlighting the inability of Whisper to perform zero-shot transcription of single-word utterances on out-of-domain clinical speech and emphasizing the need to adapt models to specific clinical populations. While challenges remain in cross-domain generalization, these findings highlight the potential of foundation models, when appropriately fine-tuned, to advance automated speech and language assessment and rehabilitation for stroke-related impairments.
Recent advances in Automatic Speech Recognition (ASR) have demonstrated remarkable accuracy and robustness in diverse audio applications, such as live transcription and voice command processing. However, deploying these models on resource constrained edge devices (e.g., IoT device, wearables) still presents substantial challenges due to strict limits on memory, compute and power. Quantization, particularly Post-Training Quantization (PTQ), offers an effective way to reduce model size and inference cost without retraining. Despite its importance, the performance implications of various advanced quantization methods and bit-width configurations on ASR models remain unclear. In this work, we present a comprehensive benchmark of eight state-of-the-art (SOTA) PTQ methods applied to two leading edge-ASR model families, Whisper and Moonshine. We systematically evaluate model performances (i.e., accuracy, memory I/O and bit operations) across seven diverse datasets from the open ASR leaderboard, analyzing the impact of quantization and various configurations on both weights and activations. Built on an extension of the LLM compression toolkit, our framework integrates edge-ASR models, diverse advanced quantization algorithms, a unified calibration and evaluation data pipeline, and detailed analysis tools. Our results characterize the trade-offs between efficiency and accuracy, demonstrating that even 3-bit quantization can succeed on high capacity models when using advanced PTQ techniques. These findings provide valuable insights for optimizing ASR models on low-power, always-on edge devices.