Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Developing narrative and comprehension skills in early childhood is critical for later literacy. However, teachers in large preschool classrooms struggle to accurately identify students who require intervention. We present a system for automatically assessing oral narratives of preschool children in Afrikaans and isiXhosa. The system uses automatic speech recognition followed by a machine learning scoring model to predict narrative and comprehension scores. For scoring predicted transcripts, we compare a linear model to a large language model (LLM). The LLM-based system outperforms the linear model in most cases, but the linear system is competitive despite its simplicity. The LLM-based system is comparable to a human expert in flagging children who require intervention. We lay the foundation for automatic oral assessments in classrooms, giving teachers extra capacity to focus on personalised support for children's learning.
Current expressive speech synthesis models are constrained by the limited availability of open-source datasets containing diverse nonverbal vocalizations (NVs). In this work, we introduce NonverbalTTS (NVTTS), a 17-hour open-access dataset annotated with 10 types of NVs (e.g., laughter, coughs) and 8 emotional categories. The dataset is derived from popular sources, VoxCeleb and Expresso, using automated detection followed by human validation. We propose a comprehensive pipeline that integrates automatic speech recognition (ASR), NV tagging, emotion classification, and a fusion algorithm to merge transcriptions from multiple annotators. Fine-tuning open-source text-to-speech (TTS) models on the NVTTS dataset achieves parity with closed-source systems such as CosyVoice2, as measured by both human evaluation and automatic metrics, including speaker similarity and NV fidelity. By releasing NVTTS and its accompanying annotation guidelines, we address a key bottleneck in expressive TTS research. The dataset is available at https://huggingface.co/datasets/deepvk/NonverbalTTS.
Recent advances in Automatic Speech Recognition (ASR) have demonstrated remarkable accuracy and robustness in diverse audio applications, such as live transcription and voice command processing. However, deploying these models on resource constrained edge devices (e.g., IoT device, wearables) still presents substantial challenges due to strict limits on memory, compute and power. Quantization, particularly Post-Training Quantization (PTQ), offers an effective way to reduce model size and inference cost without retraining. Despite its importance, the performance implications of various advanced quantization methods and bit-width configurations on ASR models remain unclear. In this work, we present a comprehensive benchmark of eight state-of-the-art (SOTA) PTQ methods applied to two leading edge-ASR model families, Whisper and Moonshine. We systematically evaluate model performances (i.e., accuracy, memory I/O and bit operations) across seven diverse datasets from the open ASR leaderboard, analyzing the impact of quantization and various configurations on both weights and activations. Built on an extension of the LLM compression toolkit, our framework integrates edge-ASR models, diverse advanced quantization algorithms, a unified calibration and evaluation data pipeline, and detailed analysis tools. Our results characterize the trade-offs between efficiency and accuracy, demonstrating that even 3-bit quantization can succeed on high capacity models when using advanced PTQ techniques. These findings provide valuable insights for optimizing ASR models on low-power, always-on edge devices.
While end-to-end Automatic Speech Recognition (ASR) models have shown impressive performance in transcribing general speech, they often struggle to accurately recognize contextually relevant keywords, such as proper nouns or user-specific entities. Previous approaches have explored leveraging keyword dictionaries in the textual modality to improve keyword recognition, either through token-level fusion that guides token-by-token generation or phrase-level fusion that enables direct copying of keyword phrases. However, these methods operate at different granularities and have their own limitations. In this paper, we propose a novel multi-grained fusion approach that jointly leverages the strengths of both token-level and phrase-level fusion with Large Language Models (LLMs). Our approach incorporates a late-fusion strategy that elegantly combines ASR's acoustic information with LLM's rich contextual knowledge, balancing fine-grained token precision with holistic phrase-level understanding. Experiments on Chinese and English datasets demonstrate that our approach achieves state-of-the-art performance on keyword-related metrics while preserving high accuracy on non-keyword text. Ablation studies further confirm that the token-level and phrase-level components both contribute significantly to the performance gains, complementing each other in our joint multi-grained framework. The code and models will be publicly available at https://github.com/.
Formal thought disorder (FTD), a hallmark of schizophrenia spectrum disorders, manifests as incoherent speech and poses challenges for clinical assessment. Traditional clinical rating scales, though validated, are resource-intensive and lack scalability. Automated speech analysis with automatic speech recognition (ASR) allows for objective quantification of linguistic and temporal features of speech, offering scalable alternatives. The use of utterance timestamps in ASR captures pause dynamics, which are thought to reflect the cognitive processes underlying speech production. However, the utility of integrating these ASR-derived features for assessing FTD severity requires further evaluation. This study integrates pause features with semantic coherence metrics across three datasets: naturalistic self-recorded diaries (AVH, n = 140), structured picture descriptions (TOPSY, n = 72), and dream narratives (PsyCL, n = 43). We evaluated pause related features alongside established coherence measures, using support vector regression (SVR) to predict clinical FTD scores. Key findings demonstrate that pause features alone robustly predict the severity of FTD. Integrating pause features with semantic coherence metrics enhanced predictive performance compared to semantic-only models, with integration of independent models achieving correlations up to \r{ho} = 0.649 and AUC = 83.71% for severe cases detection (TOPSY, with best \r{ho} = 0.584 and AUC = 79.23% for semantic-only models). The performance gains from semantic and pause features integration held consistently across all contexts, though the nature of pause patterns was dataset-dependent. These findings suggest that frameworks combining temporal and semantic analyses provide a roadmap for refining the assessment of disorganized speech and advance automated speech analysis in psychosis.
Realistic, high-fidelity 3D facial animations are crucial for expressive avatar systems in human-computer interaction and accessibility. Although prior methods show promising quality, their reliance on the mesh domain limits their ability to fully leverage the rapid visual innovations seen in 2D computer vision and graphics. We propose VisualSpeaker, a novel method that bridges this gap using photorealistic differentiable rendering, supervised by visual speech recognition, for improved 3D facial animation. Our contribution is a perceptual lip-reading loss, derived by passing photorealistic 3D Gaussian Splatting avatar renders through a pre-trained Visual Automatic Speech Recognition model during training. Evaluation on the MEAD dataset demonstrates that VisualSpeaker improves both the standard Lip Vertex Error metric by 56.1% and the perceptual quality of the generated animations, while retaining the controllability of mesh-driven animation. This perceptual focus naturally supports accurate mouthings, essential cues that disambiguate similar manual signs in sign language avatars.
Speaker, author, and other biometric identification applications often compare a sample's similarity to a database of templates to determine the identity. Given that data may be noisy and similarity measures can be inaccurate, such a comparison may not reliably identify the true identity as the most similar. Still, even the similarity rank based on an inaccurate similarity measure can disclose private information about the true identity. We propose a methodology for quantifying the privacy disclosure of such a similarity rank by estimating its probability distribution. It is based on determining the histogram of the similarity rank of the true speaker, or when data is scarce, modeling the histogram with the beta-binomial distribution. We express the disclosure in terms of entropy (bits), such that the disclosure from independent features are additive. Our experiments demonstrate that all tested speaker and author characterizations contain personally identifying information (PII) that can aid in identification, with embeddings from speaker recognition algorithms containing the most information, followed by phone embeddings, linguistic embeddings, and fundamental frequency. Our initial experiments show that the disclosure of PII increases with the length of test samples, but it is bounded by the length of database templates. The provided metric, similarity rank disclosure, provides a way to compare the disclosure of PII between biometric features and merge them to aid identification. It can thus aid in the holistic evaluation of threats to privacy in speech and other biometric technologies.
Affective tactile interaction constitutes a fundamental component of human communication. In natural human-human encounters, touch is seldom experienced in isolation; rather, it is inherently multisensory. Individuals not only perceive the physical sensation of touch but also register the accompanying auditory cues generated through contact. The integration of haptic and auditory information forms a rich and nuanced channel for emotional expression. While extensive research has examined how robots convey emotions through facial expressions and speech, their capacity to communicate social gestures and emotions via touch remains largely underexplored. To address this gap, we developed a multimodal interaction system incorporating a 5*5 grid of 25 vibration motors synchronized with audio playback, enabling robots to deliver combined haptic-audio stimuli. In an experiment involving 32 Chinese participants, ten emotions and six social gestures were presented through vibration, sound, or their combination. Participants rated each stimulus on arousal and valence scales. The results revealed that (1) the combined haptic-audio modality significantly enhanced decoding accuracy compared to single modalities; (2) each individual channel-vibration or sound-effectively supported certain emotions recognition, with distinct advantages depending on the emotional expression; and (3) gestures alone were generally insufficient for conveying clearly distinguishable emotions. These findings underscore the importance of multisensory integration in affective human-robot interaction and highlight the complementary roles of haptic and auditory cues in enhancing emotional communication.
Emotion and intent recognition from speech is essential and has been widely investigated in human-computer interaction. The rapid development of social media platforms, chatbots, and other technologies has led to a large volume of speech data streaming from users. Nevertheless, annotating such data manually is expensive, making it challenging to train machine learning models for recognition purposes. To this end, we propose applying semi-supervised learning to incorporate a large scale of unlabelled data alongside a relatively smaller set of labelled data. We train end-to-end acoustic and linguistic models, each employing multi-task learning for emotion and intent recognition. Two semi-supervised learning approaches, including fix-match learning and full-match learning, are compared. The experimental results demonstrate that the semi-supervised learning approaches improve model performance in speech emotion and intent recognition from both acoustic and text data. The late fusion of the best models outperforms the acoustic and text baselines by joint recognition balance metrics of 12.3% and 10.4%, respectively.
In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.