Abstract:Developing narrative and comprehension skills in early childhood is critical for later literacy. However, teachers in large preschool classrooms struggle to accurately identify students who require intervention. We present a system for automatically assessing oral narratives of preschool children in Afrikaans and isiXhosa. The system uses automatic speech recognition followed by a machine learning scoring model to predict narrative and comprehension scores. For scoring predicted transcripts, we compare a linear model to a large language model (LLM). The LLM-based system outperforms the linear model in most cases, but the linear system is competitive despite its simplicity. The LLM-based system is comparable to a human expert in flagging children who require intervention. We lay the foundation for automatic oral assessments in classrooms, giving teachers extra capacity to focus on personalised support for children's learning.
Abstract:Oral narrative skills are strong predictors of later literacy development. This study examines the features of oral narratives from children who were identified by experts as requiring intervention. Using simple machine learning methods, we analyse recorded stories from four- and five-year-old Afrikaans- and isiXhosa-speaking children. Consistent with prior research, we identify lexical diversity (unique words) and length-based features (mean utterance length) as indicators of typical development, but features like articulation rate prove less informative. Despite cross-linguistic variation in part-of-speech patterns, the use of specific verbs and auxiliaries associated with goal-directed storytelling is correlated with a reduced likelihood of requiring intervention. Our analysis of two linguistically distinct languages reveals both language-specific and shared predictors of narrative proficiency, with implications for early assessment in multilingual contexts.
Abstract:We develop automatic speech recognition (ASR) systems for stories told by Afrikaans and isiXhosa preschool children. Oral narratives provide a way to assess children's language development before they learn to read. We consider a range of prior child-speech ASR strategies to determine which is best suited to this unique setting. Using Whisper and only 5 minutes of transcribed in-domain child speech, we find that additional in-domain adult data (adult speech matching the story domain) provides the biggest improvement, especially when coupled with voice conversion. Semi-supervised learning also helps for both languages, while parameter-efficient fine-tuning helps on Afrikaans but not on isiXhosa (which is under-represented in the Whisper model). Few child-speech studies look at non-English data, and even fewer at the preschool ages of 4 and 5. Our work therefore represents a unique validation of a wide range of previous child-speech ASR strategies in an under-explored setting.