Abstract:Voice Activity Detection (VAD) in the presence of background noise remains a challenging problem in speech processing. Accurate VAD is essential in automatic speech recognition, voice-to-text, conversational agents, etc, where noise can severely degrade the performance. A modern application includes the voice assistant, specially mounted on Artificial Intelligence of Things (AIoT) devices such as cell phones, smart glasses, earbuds, etc, where the voice signal includes background noise. Therefore, VAD modules must remain light-weight due to their practical on-device limitation. The existing models often struggle with low signal-to-noise ratios across diverse acoustic environments. A simple VAD often detects human voice in a clean environment, but struggles to detect the human voice in noisy conditions. We propose a noise-robust VAD that comprises a light-weight VAD, with data pre-processing and post-processing added modules to handle the background noise. This approach significantly enhances the VAD accuracy in noisy environments and requires neither a larger model, nor fine-tuning. Experimental results demonstrate that our approach achieves a notable improvement compared to baselines, particularly in environments with high background noise interference. This modified VAD additionally improving clean speech detection.
Abstract:Advancing the design of robust hearing aid (HA) voice control is crucial to increase the HA use rate among hard of hearing people as well as to improve HA users' experience. In this work, we contribute towards this goal by, first, presenting a novel HA speech dataset consisting of noisy own voice captured by 2 behind-the-ear (BTE) and 1 in-ear-canal (IEC) microphones. Second, we provide baseline HA voice control results from the evaluation of light, state-of-the-art keyword spotting models utilizing different combinations of HA microphone signals. Experimental results show the benefits of exploiting bandwidth-limited bone-conducted speech (BCS) from the IEC microphone to achieve noise-robust HA voice control. Furthermore, results also demonstrate that voice control performance can be boosted by assisting BCS by the broader-bandwidth BTE microphone signals. Aiming at setting a baseline upon which the scientific community can continue to progress, the HA noisy speech dataset has been made publicly available.