Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
Occluded traffic agents pose a significant challenge for autonomous vehicles, as hidden pedestrians or vehicles can appear unexpectedly, yet this problem remains understudied. Existing learning-based methods, while capable of inferring the presence of hidden agents, often produce redundant occupancy predictions where a single agent is identified multiple times. This issue complicates downstream planning and increases computational load. To address this, we introduce MatchInformer, a novel transformer-based approach that builds on the state-of-the-art SceneInformer architecture. Our method improves upon prior work by integrating Hungarian Matching, a state-of-the-art object matching algorithm from object detection, into the training process to enforce a one-to-one correspondence between predictions and ground truth, thereby reducing redundancy. We further refine trajectory forecasts by decoupling an agent's heading from its motion, a strategy that improves the accuracy and interpretability of predicted paths. To better handle class imbalances, we propose using the Matthews Correlation Coefficient (MCC) to evaluate occupancy predictions. By considering all entries in the confusion matrix, MCC provides a robust measure even in sparse or imbalanced scenarios. Experiments on the Waymo Open Motion Dataset demonstrate that our approach improves reasoning about occluded regions and produces more accurate trajectory forecasts than prior methods.
Language-referred audio-visual segmentation (Ref-AVS) aims to segment target objects described by natural language by jointly reasoning over video, audio, and text. Beyond generating segmentation masks, providing rich and interpretable diagnoses of mask quality remains largely underexplored. In this work, we introduce Mask Quality Assessment in the Ref-AVS context (MQA-RefAVS), a new task that evaluates the quality of candidate segmentation masks without relying on ground-truth annotations as references at inference time. Given audio-visual-language inputs and each provided segmentation mask, the task requires estimating its IoU with the unobserved ground truth, identifying the corresponding error type, and recommending an actionable quality-control decision. To support this task, we construct MQ-RAVSBench, a benchmark featuring diverse and representative mask error modes that span both geometric and semantic issues. We further propose MQ-Auditor, a multimodal large language model (MLLM)-based auditor that explicitly reasons over multimodal cues and mask information to produce quantitative and qualitative mask quality assessments. Extensive experiments demonstrate that MQ-Auditor outperforms strong open-source and commercial MLLMs and can be integrated with existing Ref-AVS systems to detect segmentation failures and support downstream segmentation improvement. Data and codes will be released at https://github.com/jasongief/MQA-RefAVS.
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
Legal judgments may contain errors due to the complexity of case circumstances and the abstract nature of legal concepts, while existing appellate review mechanisms face efficiency pressures from a surge in case volumes. Although current legal AI research focuses on tasks like judgment prediction and legal document generation, the task of judgment review differs fundamentally in its objectives and paradigm: it centers on detecting, classifying, and correcting errors after a judgment is issued, constituting anomaly detection rather than prediction or generation. To address this research gap, we introduce a novel task APPELLATE REVIEW, aiming to assess models' diagnostic reasoning and reliability in legal practice. We also construct a novel dataset benchmark AR-BENCH, which comprises 8,700 finely annotated decisions and 34,617 supplementary corpora. By evaluating 14 large language models, we reveal critical limitations in existing models' ability to identify legal application errors, providing empirical evidence for future improvements.
Open world object detection faces a significant challenge in domain-invariant representation, i.e., implicit non-causal factors. Most domain generalization (DG) methods based on domain adversarial learning (DAL) pay much attention to learn domain-invariant information, but often overlook the potential non-causal factors. We unveil two critical causes: 1) The domain discriminator-based DAL method is subject to the extremely sparse domain label, i.e., assigning only one domain label to each dataset, thus can only associate explicit non-causal factor, which is incredibly limited. 2) The non-causal factors, induced by unidentified data bias, are excessively implicit and cannot be solely discerned by conventional DAL paradigm. Based on these key findings, inspired by the Granular-Ball perspective, we propose an improved DAL method, i.e., GB-DAL. The proposed GB-DAL utilizes Prototype-based Granular Ball Splitting (PGBS) module to generate more dense domains from limited datasets, akin to more fine-grained granular balls, indicating more potential non-causal factors. Inspired by adversarial perturbations akin to non-causal factors, we propose a Simulated Non-causal Factors (SNF) module as a means of data augmentation to reduce the implicitness of non-causal factors, and facilitate the training of GB-DAL. Comparative experiments on numerous benchmarks demonstrate that our method achieves better generalization performance in novel circumstances.
The Segment Anything Model has revolutionized image segmentation with its zero-shot capabilities, yet its reliance on manual prompts hinders fully automated deployment. While integrating object detectors as prompt generators offers a pathway to automation, existing pipelines suffer from two fundamental limitations: objective mismatch, where detectors optimized for geometric localization do not correspond to the optimal prompting context required by SAM, and alignment overfitting in standard joint training, where the detector simply memorizes specific prompt adjustments for training samples rather than learning a generalizable policy. To bridge this gap, we introduce BLO-Inst, a unified framework that aligns detection and segmentation objectives by bi-level optimization. We formulate the alignment as a nested optimization problem over disjoint data splits. In the lower level, the SAM is fine-tuned to maximize segmentation fidelity given the current detection proposals on a subset ($D_1$). In the upper level, the detector is updated to generate bounding boxes that explicitly minimize the validation loss of the fine-tuned SAM on a separate subset ($D_2$). This effectively transforms the detector into a segmentation-aware prompt generator, optimizing the bounding boxes not just for localization accuracy, but for downstream mask quality. Extensive experiments demonstrate that BLO-Inst achieves superior performance, outperforming standard baselines on tasks in general and biomedical domains.
Real-time small object detection in Unmanned Aerial Vehicle (UAV) imagery remains challenging due to limited feature representation and ineffective multi-scale fusion. Existing methods underutilize frequency information and rely on static convolutional operations, which constrain the capacity to obtain rich feature representations and hinder the effective exploitation of deep semantic features. To address these issues, we propose EFSI-DETR, a novel detection framework that integrates efficient semantic feature enhancement with dynamic frequency-spatial guidance. EFSI-DETR comprises two main components: (1) a Dynamic Frequency-Spatial Unified Synergy Network (DyFusNet) that jointly exploits frequency and spatial cues for robust multi-scale feature fusion, (2) an Efficient Semantic Feature Concentrator (ESFC) that enables deep semantic extraction with minimal computational cost. Furthermore, a Fine-grained Feature Retention (FFR) strategy is adopted to incorporate spatially rich shallow features during fusion to preserve fine-grained details, crucial for small object detection in UAV imagery. Extensive experiments on VisDrone and CODrone benchmarks demonstrate that our EFSI-DETR achieves the state-of-the-art performance with real-time efficiency, yielding improvement of \textbf{1.6}\% and \textbf{5.8}\% in AP and AP$_{s}$ on VisDrone, while obtaining \textbf{188} FPS inference speed on a single RTX 4090 GPU.