Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
As the population ages rapidly, long-term care (LTC) facilities across North America face growing pressure to monitor residents safely while keeping staff workload manageable. Falls are among the most critical events to monitor due to their timely response requirement, yet frequent false alarms or uncertain detections can overwhelm caregivers and contribute to alarm fatigue. This motivates the design of reliable, whole end-to-end ambient monitoring systems from occupancy and activity awareness to fall and post-fall detection. In this paper, we focus on robust post-fall floor-occupancy detection using an off-the-shelf 60 GHz FMCW radar and evaluate its deployment in a realistic, furnished indoor environment representative of LTC facilities. Post-fall detection is challenging since motion is minimal, and reflections from the floor and surrounding objects can dominate the radar signal return. We compare a vendor-provided digital beamforming (DBF) pipeline against a proposed preprocessing approach based on Capon or minimum variance distortionless response (MVDR) beamforming. A cell-averaging constant false alarm rate (CA-CFAR) detector is applied and evaluated on the resulting range-azimuth maps across 7 participants. The proposed method improves the mean frame-positive rate from 0.823 (DBF) to 0.916 (Proposed).
Open-Vocabulary Object Detection (OVOD) aims to develop the capability to detect anything. Although myriads of large-scale pre-training efforts have built versatile foundation models that exhibit impressive zero-shot capabilities to facilitate OVOD, the necessity of creating a universal understanding for any object cognition according to already pretrained foundation models is usually overlooked. Therefore, in this paper, a training-free Guess What Vision Language Model, called GW-VLM, is proposed to form a universal understanding paradigm based on our carefully designed Multi-Scale Visual Language Searching (MS-VLS) coupled with Contextual Concept Prompt (CCP) for OVOD. This approach can engage a pre-trained Vision Language Model (VLM) and a Large Language Model (LLM) in the game of "guess what". Wherein, MS-VLS leverages multi-scale visual-language soft-alignment for VLM to generate snippets from the results of class-agnostic object detection, while CCP can form the concept of flow referring to MS-VLS and then make LLM understand snippets for OVOD. Finally, the extensive experiments are carried out on natural and remote sensing datasets, including COCO val, Pascal VOC, DIOR, and NWPU-10, and the results indicate that our proposed GW-VLM can achieve superior OVOD performance compared to the-state-of-the-art methods without any training step.
Recent advances in multi-modal detection have significantly improved detection accuracy in challenging environments (e.g., low light, overexposure). By integrating RGB with modalities such as thermal and depth, multi-modal fusion increases data redundancy and system robustness. However, significant challenges remain in effectively extracting task-relevant information both within and across modalities, as well as in achieving precise cross-modal alignment. While CNNs excel at feature extraction, they are limited by constrained receptive fields, strong inductive biases, and difficulty in capturing long-range dependencies. Transformer-based models offer global context but suffer from quadratic computational complexity and are confined to pairwise correlation modeling. Mamba and other State Space Models (SSMs), on the other hand, are hindered by their sequential scanning mechanism, which flattens 2D spatial structures into 1D sequences, disrupting topological relationships and limiting the modeling of complex higher-order dependencies. To address these issues, we propose a multi-modal perception network based on hypergraph theory called M2I2HA. Our architecture includes an Intra-Hypergraph Enhancement module to capture global many-to-many high-order relationships within each modality, and an Inter-Hypergraph Fusion module to align, enhance, and fuse cross-modal features by bridging configuration and spatial gaps between data sources. We further introduce a M2-FullPAD module to enable adaptive multi-level fusion of multi-modal enhanced features within the network, meanwhile enhancing data distribution and flow across the architecture. Extensive object detection experiments on multiple public datasets against baselines demonstrate that M2I2HA achieves state-of-the-art performance in multi-modal object detection tasks.
Explainable AI (XAI) is commonly applied to anomalous sound detection (ASD) models to identify which time-frequency regions of an audio signal contribute to an anomaly decision. However, most audio explanations rely on qualitative inspection of saliency maps, leaving open the question of whether these attributions accurately reflect the spectral cues the model uses. In this work, we introduce a new quantitative framework for evaluating XAI faithfulness in machine-sound analysis by directly linking attribution relevance to model behaviour through systematic frequency-band removal. This approach provides an objective measure of whether an XAI method for machine ASD correctly identifies frequency regions that influence an ASD model's predictions. By using four widely adopted methods, namely Integrated Gradients, Occlusion, Grad-CAM and SmoothGrad, we show that XAI techniques differ in reliability, with Occlusion demonstrating the strongest alignment with true model sensitivity and gradient-+based methods often failing to accurately capture spectral dependencies. The proposed framework offers a reproducible way to benchmark audio explanations and enables more trustworthy interpretation of spectrogram-based ASD systems.
Adjusting rifle sights, a process commonly called "zeroing," requires shooters to identify and differentiate bullet holes from multiple firing iterations. Traditionally, this process demands physical inspection, introducing delays due to range safety protocols and increasing the risk of human error. We present an end-to-end computer vision system for automated bullet hole detection and iteration-based tracking directly from images taken at the firing line. Our approach combines YOLOv8 for accurate small-object detection with Intersection over Union (IoU) analysis to differentiate bullet holes across sequential images. To address the scarcity of labeled sequential data, we propose a novel data augmentation technique that removes rather than adds objects to simulate realistic firing sequences. Additionally, we introduce a preprocessing pipeline that standardizes target orientation using ORB-based perspective correction, improving model accuracy. Our system achieves 97.0% mean average precision on bullet hole detection and 88.8% accuracy in assigning bullet holes to the correct firing iteration. While designed for rifle zeroing, this framework offers broader applicability in domains requiring the temporal differentiation of visually similar objects.
The scientific peer-review process is facing a shortage of human resources due to the rapid growth in the number of submitted papers. The use of language models to reduce the human cost of peer review has been actively explored as a potential solution to this challenge. A method has been proposed to evaluate the level of substantiation in scientific reviews in a manner that is interpretable by humans. This method extracts the core components of an argument, claims and evidence, and assesses the level of substantiation based on the proportion of claims supported by evidence. The level of substantiation refers to the extent to which claims are based on objective facts. However, when assessing the level of substantiation, simply detecting the presence or absence of supporting evidence for a claim is insufficient; it is also necessary to accurately assess the logical inference between a claim and its evidence. We propose a new evaluation metric for scientific review comments that assesses the logical inference between claims and evidence. Experimental results show that the proposed method achieves a higher correlation with human scores than conventional methods, indicating its potential to better support the efficiency of the peer-review process.
Nuclei panoptic segmentation supports cancer diagnostics by integrating both semantic and instance segmentation of different cell types to analyze overall tissue structure and individual nuclei in histopathology images. Major challenges include detecting small objects, handling ambiguous boundaries, and addressing class imbalance. To address these issues, we propose PanopMamba, a novel hybrid encoder-decoder architecture that integrates Mamba and Transformer with additional feature-enhanced fusion via state space modeling. We design a multiscale Mamba backbone and a State Space Model (SSM)-based fusion network to enable efficient long-range perception in pyramid features, thereby extending the pure encoder-decoder framework while facilitating information sharing across multiscale features of nuclei. The proposed SSM-based feature-enhanced fusion integrates pyramid feature networks and dynamic feature enhancement across different spatial scales, enhancing the feature representation of densely overlapping nuclei in both semantic and spatial dimensions. To the best of our knowledge, this is the first Mamba-based approach for panoptic segmentation. Additionally, we introduce alternative evaluation metrics, including image-level Panoptic Quality ($i$PQ), boundary-weighted PQ ($w$PQ), and frequency-weighted PQ ($fw$PQ), which are specifically designed to address the unique challenges of nuclei segmentation and thereby mitigate the potential bias inherent in vanilla PQ. Experimental evaluations on two multiclass nuclei segmentation benchmark datasets, MoNuSAC2020 and NuInsSeg, demonstrate the superiority of PanopMamba for nuclei panoptic segmentation over state-of-the-art methods. Consequently, the robustness of PanopMamba is validated across various metrics, while the distinctiveness of PQ variants is also demonstrated. Code is available at https://github.com/mkang315/PanopMamba.
Key doctrines, including novelty (patent), originality (copyright), and distinctiveness (trademark), turn on a shared empirical question: whether a body of work is meaningfully distinct from a relevant reference class. Yet analyses typically operationalize this set-level inquiry using item-level evidence: pairwise comparisons among exemplars. That unit-of-analysis mismatch may be manageable for finite corpora of human-created works, where it can be bridged by ad hoc aggregations. But it becomes acute for machine-generated works, where the object of evaluation is not a fixed set of works but a generative process with an effectively unbounded output space. We propose a distributional alternative: a two-sample test based on maximum mean discrepancy computed on semantic embeddings to determine if two creative processes-whether human or machine-produce statistically distinguishable output distributions. The test requires no task-specific training-obviating the need for discovery of proprietary training data to characterize the generative process-and is sample-efficient, often detecting differences with as few as 5-10 images and 7-20 texts. We validate the framework across three domains: handwritten digits (controlled images), patent abstracts (text), and AI-generated art (real-world images). We reveal a perceptual paradox: even when human evaluators distinguish AI outputs from human-created art with only about 58% accuracy, our method detects distributional distinctiveness. Our results present evidence contrary to the view that generative models act as mere regurgitators of training data. Rather than producing outputs statistically indistinguishable from a human baseline-as simple regurgitation would predict-they produce outputs that are semantically human-like yet stochastically distinct, suggesting their dominant function is as a semantic interpolator within a learned latent space.
Background: In medical and health professions education (HPE), AI is increasingly used to assess clinical competencies, including via virtual standardized patients. However, most evaluations rely on AI-human interrater reliability and lack a measurement framework for how cases, learners, and raters jointly shape scores. This leaves robustness uncertain and can expose learners to misguidance from unvalidated systems. We address this by using AI "simulated learners" to stress-test and psychometrically characterize assessment pipelines before human use. Objective: Develop an open-source AI virtual patient platform and measurement model for robust competency evaluation across cases and rating conditions. Methods: We built a platform with virtual patients, virtual learners with tunable ACGME-aligned competency profiles, and multiple independent AI raters scoring encounters with structured Key-Features items. Transcripts were analyzed with a Bayesian HRM-SDT model that treats ratings as decisions under uncertainty and separates learner ability, case performance, and rater behavior; parameters were estimated with MCMC. Results: The model recovered simulated learners' competencies, with significant correlations to the generating competencies across all ACGME domains despite a non-deterministic pipeline. It estimated case difficulty by competency and showed stable rater detection (sensitivity) and criteria (severity/leniency thresholds) across AI raters using identical models/prompts but different seeds. We also propose a staged "safety blueprint" for deploying AI tools with learners, tied to entrustment-based validation milestones. Conclusions: Combining a purpose-built virtual patient platform with a principled psychometric model enables robust, interpretable, generalizable competency estimates and supports validation of AI-assisted assessment prior to use with human learners.
Training deep computer vision models requires manual oversight or hyperparameter tuning of the learning rate (LR) schedule. While existing adaptive optimizers schedule the LR automatically, they suffer from computational and memory overhead, incompatibility with regularization, and suboptimal LR choices. In this work, we introduce the ZENITH (Zero-overhead Evolution using Norm-Informed Training History) optimizer, which adapts the LR using the temporal evolution of the gradient norm. Image classification experiments spanning 6 CNN architectures and 6 benchmarks demonstrate that ZENITH achieves higher test accuracy in lower wall-clock time than baselines. It also yielded superior mAP in object detection, keypoint detection, and instance segmentation on MS COCO using the R-CNN family of models. Furthermore, its compatibility with regularization enables even better generalization.