Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
The purpose of this project is to assess how well defenders can detect DNS-over-HTTPS (DoH) file exfiltration, and which evasion strategies can be used by attackers. While providing a reproducible toolkit to generate, intercept and analyze DoH exfiltration, and comparing Machine Learning vs threshold-based detection under adversarial scenarios. The originality of this project is the introduction of an end-to-end, containerized pipeline that generates configurable file exfiltration over DoH using several parameters (e.g., chunking, encoding, padding, resolver rotation). It allows for file reconstruction at the resolver side, while extracting flow-level features using a fork of DoHLyzer. The pipeline contains a prediction side, which allows the training of machine learning models based on public labelled datasets and then evaluates them side-by-side with threshold-based detection methods against malicious and evasive DNS-Over-HTTPS traffic. We train Random Forest, Gradient Boosting and Logistic Regression classifiers on a public DoH dataset and benchmark them against evasive DoH exfiltration scenarios. The toolkit orchestrates traffic generation, file capture, feature extraction, model training and analysis. The toolkit is then encapsulated into several Docker containers for easy setup and full reproducibility regardless of the platform it is run on. Future research regarding this project is directed at validating the results on mixed enterprise traffic, extending the protocol coverage to HTTP/3/QUIC request, adding a benign traffic generation, and working on real-time traffic evaluation. A key objective is to quantify when stealth constraints make DoH exfiltration uneconomical and unworthy for the attacker.
Existing image forgery detection (IFD) methods either exploit low-level, semantics-agnostic artifacts or rely on multimodal large language models (MLLMs) with high-level semantic knowledge. Although naturally complementary, these two information streams are highly heterogeneous in both paradigm and reasoning, making it difficult for existing methods to unify them or effectively model their cross-level interactions. To address this gap, we propose ForenAgent, a multi-round interactive IFD framework that enables MLLMs to autonomously generate, execute, and iteratively refine Python-based low-level tools around the detection objective, thereby achieving more flexible and interpretable forgery analysis. ForenAgent follows a two-stage training pipeline combining Cold Start and Reinforcement Fine-Tuning to enhance its tool interaction capability and reasoning adaptability progressively. Inspired by human reasoning, we design a dynamic reasoning loop comprising global perception, local focusing, iterative probing, and holistic adjudication, and instantiate it as both a data-sampling strategy and a task-aligned process reward. For systematic training and evaluation, we construct FABench, a heterogeneous, high-quality agent-forensics dataset comprising 100k images and approximately 200k agent-interaction question-answer pairs. Experiments show that ForenAgent exhibits emergent tool-use competence and reflective reasoning on challenging IFD tasks when assisted by low-level tools, charting a promising route toward general-purpose IFD. The code will be released after the review process is completed.
Object detection models deployed in real-world applications such as autonomous driving face serious threats from backdoor attacks. Despite their practical effectiveness,existing methods are inherently limited in both capability and robustness due to their dependence on single-trigger-single-object mappings and fragile pixel-level cues. We propose CIS-BA, a novel backdoor attack paradigm that redefines trigger design by shifting from static object features to continuous inter-object interaction patterns that describe how objects co-occur and interact in a scene. By modeling these patterns as a continuous interaction space, CIS-BA introduces space triggers that, for the first time, enable a multi-trigger-multi-object attack mechanism while achieving robustness through invariant geometric relations. To implement this paradigm, we design CIS-Frame, which constructs space triggers via interaction analysis, formalizes them as class-geometry constraints for sample poisoning, and embeds the backdoor during detector training. CIS-Frame supports both single-object attacks (object misclassification and disappearance) and multi-object simultaneous attacks, enabling complex and coordinated effects across diverse interaction states. Experiments on MS-COCO and real-world videos show that CIS-BA achieves over 97% attack success under complex environments and maintains over 95% effectiveness under dynamic multi-trigger conditions, while evading three state-of-the-art defenses. In summary, CIS-BA extends the landscape of backdoor attacks in interaction-intensive scenarios and provides new insights into the security of object detection systems.
Extensive evaluation of perception systems is crucial for ensuring the safety of intelligent vehicles in complex driving scenarios. Conventional performance metrics such as precision, recall and the F1-score assess the overall detection accuracy, but they do not consider the safety-relevant aspects of perception. Consequently, perception systems that achieve high scores in these metrics may still cause misdetections that could lead to severe accidents. Therefore, it is important to evaluate not only the overall performance of perception systems, but also their safety. We therefore introduce a novel safety metric for jointly evaluating the most critical perception tasks, object and lane detection. Our proposed framework integrates a new, lightweight object safety metric that quantifies the potential risk associated with object detection errors, as well as an lane safety metric including the interdependence between both tasks that can occur in safety evaluation. The resulting combined safety score provides a unified, interpretable measure of perception safety performance. Using the DeepAccident dataset, we demonstrate that our approach identifies safety critical perception errors that conventional performance metrics fail to capture. Our findings emphasize the importance of safety-centric evaluation methods for perception systems in autonomous driving.
AI-for-Code (AI4Code) systems are reshaping software engineering, with tools like GitHub Copilot accelerating code generation, translation, and vulnerability detection. Alongside these advances, however, security risks remain pervasive: insecure outputs, biased benchmarks, and susceptibility to adversarial manipulation undermine their reliability. This SoK surveys the landscape of AI4Code security across three core applications, identifying recurring gaps: benchmark dominance by Python and toy problems, lack of standardized security datasets, data leakage in evaluation, and fragile adversarial robustness. A comparative study of six state-of-the-art models illustrates these challenges: insecure patterns persist in code generation, vulnerability detection is brittle to semantic-preserving attacks, fine-tuning often misaligns security objectives, and code translation yields uneven security benefits. From this analysis, we distill three forward paths: embedding secure-by-default practices in code generation, building robust and comprehensive detection benchmarks, and leveraging translation as a route to security-enhanced languages. We call for a shift toward security-first AI4Code, where vulnerability mitigation and robustness are embedded throughout the development life cycle.
Large-scale networked multi-agent systems increasingly underpin critical infrastructure, yet their collective behavior can drift toward undesirable emergent norms that elude conventional governance mechanisms. We introduce an adaptive accountability framework that (i) continuously traces responsibility flows through a lifecycle-aware audit ledger, (ii) detects harmful emergent norms online via decentralized sequential hypothesis tests, and (iii) deploys local policy and reward-shaping interventions that realign agents with system-level objectives in near real time. We prove a bounded-compromise theorem showing that whenever the expected intervention cost exceeds an adversary's payoff, the long-run proportion of compromised interactions is bounded by a constant strictly less than one. Extensive high-performance simulations with up to 100 heterogeneous agents, partial observability, and stochastic communication graphs show that our framework prevents collusion and resource hoarding in at least 90% of configurations, boosts average collective reward by 12-18%, and lowers the Gini inequality index by up to 33% relative to a PPO baseline. These results demonstrate that a theoretically principled accountability layer can induce ethically aligned, self-regulating behavior in complex MAS without sacrificing performance or scalability.
While imitation learning has shown impressive results in single-task robot manipulation, scaling it to multi-task settings remains a fundamental challenge due to issues such as suboptimal demonstrations, trajectory noise, and behavioral multi-modality. Existing skill-based methods attempt to address this by decomposing actions into reusable abstractions, but they often rely on fixed-length segmentation or environmental priors that limit semantic consistency and cross-task generalization. In this work, we propose AtomSkill, a novel multi-task imitation learning framework that learns and leverages a structured Atomic Skill Space for composable robot manipulation. Our approach is built on two key technical contributions. First, we construct a Semantically Grounded Atomic Skill Library by partitioning demonstrations into variable-length skills using gripper-state keyframe detection and vision-language model annotation. A contrastive learning objective ensures the resulting skill embeddings are both semantically consistent and temporally coherent. Second, we propose an Action Generation module with Keypose Imagination, which jointly predicts a skill's long-horizon terminal keypose and its immediate action sequence. This enables the policy to reason about overarching motion goals and fine-grained control simultaneously, facilitating robust skill chaining. Extensive experiments in simulated and real-world environments show that AtomSkill consistently outperforms state-of-the-art methods across diverse manipulation tasks.
Capabilities and the number of vision-based models are increasing rapidly. And these vision models are now able to do more tasks like object detection, image classification, instance segmentation etc. with great accuracy. But models which can take accurate quantitative measurements form an image, as a human can do by just looking at it, are rare. For a robot to work with complete autonomy in a Laboratory environment, it needs to have some basic skills like navigation, handling objects, preparing samples etc. to match human-like capabilities in an unstructured environment. Another important capability is to read measurements from instruments and apparatus. Here, we tried to mimic a human inspired approach to read measurements from a linear scale. As a test case we have picked reading level from a syringe and a measuring cylinder. For a randomly oriented syringe we carry out transformations to correct the orientation. To make the system efficient and robust, the area of interest is reduced to just the linear scale containing part of the image. After that, a series of features were extracted like the major makers, the corresponding digits, and the level indicator location, from which the final reading was calculated. Readings obtained using this system were also compared against human read values of the same instances and an accurate correspondence was observed.
Objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia experienced by intensive care unit (ICU) patients and can cause adverse health effects. In this study, we publish a labelled ICU dataset and benchmarks for AF detection. Methods: We compared machine learning models across three data-driven artificial intelligence (AI) approaches: feature-based classifiers, deep learning (DL), and ECG foundation models (FMs). This comparison addresses a critical gap in the literature and aims to pinpoint which AI approach is best for accurate AF detection. Electrocardiograms (ECGs) from a Canadian ICU and the 2021 PhysioNet/Computing in Cardiology Challenge were used to conduct the experiments. Multiple training configurations were tested, ranging from zero-shot inference to transfer learning. Results: On average and across both datasets, ECG FMs performed best, followed by DL, then feature-based classifiers. The model that achieved the top F1 score on our ICU test set was ECG-FM through a transfer learning strategy (F1=0.89). Conclusion: This study demonstrates promising potential for using AI to build an automatic patient monitoring system. Significance: By publishing our labelled ICU dataset (LinkToBeAdded) and performance benchmarks, this work enables the research community to continue advancing the state-of-the-art in AF detection in the ICU.
Automotive radar has shown promising developments in environment perception due to its cost-effectiveness and robustness in adverse weather conditions. However, the limited availability of annotated radar data poses a significant challenge for advancing radar-based perception systems. To address this limitation, we propose a novel framework to generate 4D radar point clouds for training and evaluating object detectors. Unlike image-based diffusion, our method is designed to consider the sparsity and unique characteristics of radar point clouds by applying diffusion to a latent point cloud representation. Within this latent space, generation is controlled via conditioning at either the object or scene level. The proposed 4D-RaDiff converts unlabeled bounding boxes into high-quality radar annotations and transforms existing LiDAR point cloud data into realistic radar scenes. Experiments demonstrate that incorporating synthetic radar data of 4D-RaDiff as data augmentation method during training consistently improves object detection performance compared to training on real data only. In addition, pre-training on our synthetic data reduces the amount of required annotated radar data by up to 90% while achieving comparable object detection performance.