Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Federated AUC maximization is a powerful approach for learning from imbalanced data in federated learning (FL). However, existing methods typically assume full client availability, which is rarely practical. In real-world FL systems, clients often participate in a cyclic manner: joining training according to a fixed, repeating schedule. This setting poses unique optimization challenges for the non-decomposable AUC objective. This paper addresses these challenges by developing and analyzing communication-efficient algorithms for federated AUC maximization under cyclic client participation. We investigate two key settings: First, we study AUC maximization with a squared surrogate loss, which reformulates the problem as a nonconvex-strongly-concave minimax optimization. By leveraging the Polyak-Łojasiewicz (PL) condition, we establish a state-of-the-art communication complexity of $\widetilde{O}(1/ε^{1/2})$ and iteration complexity of $\widetilde{O}(1/ε)$. Second, we consider general pairwise AUC losses. We establish a communication complexity of $O(1/ε^3)$ and an iteration complexity of $O(1/ε^4)$. Further, under the PL condition, these bounds improve to communication complexity of $\widetilde{O}(1/ε^{1/2})$ and iteration complexity of $\widetilde{O}(1/ε)$. Extensive experiments on benchmark tasks in image classification, medical imaging, and fraud detection demonstrate the superior efficiency and effectiveness of our proposed methods.
Different types of liquids such as water, wine and medicine appear in all aspects of daily life. However, limited attention has been given to the task, hindering the ability of robots to avoid or interact with liquids safely. The segmentation of liquids is difficult because liquids come in diverse appearances and shapes; moreover, they can be both transparent or reflective, taking on arbitrary objects and scenes from the background or surroundings. To take on this challenge, we construct a large-scale dataset of liquids named LQDS consisting of 5000 real-world images annotated into 14 distinct classes, and design a novel liquid detection model named LQDM, which leverages cross-attention between a dedicated boundary branch and the main segmentation branch to enhance segmentation predictions. Extensive experiments demonstrate the effectiveness of LQDM on the test set of LQDS, outperforming state-of-the-art methods and establishing a strong baseline for the semantic segmentation of liquids.
High-resolution remote sensing imagery increasingly contains dense clusters of tiny objects, the detection of which is extremely challenging due to severe mutual occlusion and limited pixel footprints. Existing detection methods typically allocate computational resources uniformly, failing to adaptively focus on these density-concentrated regions, which hinders feature learning effectiveness. To address these limitations, we propose the Dense Region Mining Network (DRMNet), which leverages density maps as explicit spatial priors to guide adaptive feature learning. First, we design a Density Generation Branch (DGB) to model object distribution patterns, providing quantifiable priors that guide the network toward dense regions. Second, to address the computational bottleneck of global attention, our Dense Area Focusing Module (DAFM) uses these density maps to identify and focus on dense areas, enabling efficient local-global feature interaction. Finally, to mitigate feature degradation during hierarchical extraction, we introduce a Dual Filter Fusion Module (DFFM). It disentangles multi-scale features into high- and low-frequency components using a discrete cosine transform and then performs density-guided cross-attention to enhance complementarity while suppressing background interference. Extensive experiments on the AI-TOD and DTOD datasets demonstrate that DRMNet surpasses state-of-the-art methods, particularly in complex scenarios with high object density and severe occlusion.
We introduce CPPO, a Contrastive Perception Policy Optimization method for finetuning vision-language models (VLMs). While reinforcement learning (RL) has advanced reasoning in language models, extending it to multimodal reasoning requires improving both the perception and reasoning aspects. Prior works tackle this challenge mainly with explicit perception rewards, but disentangling perception tokens from reasoning tokens is difficult, requiring extra LLMs, ground-truth data, forced separation of perception from reasoning by policy model, or applying rewards indiscriminately to all output tokens. CPPO addresses this problem by detecting perception tokens via entropy shifts in the model outputs under perturbed input images. CPPO then extends the RL objective function with a Contrastive Perception Loss (CPL) that enforces consistency under information-preserving perturbations and sensitivity under information-removing ones. Experiments show that CPPO surpasses previous perception-rewarding methods, while avoiding extra models, making training more efficient and scalable.
Camouflaged image generation (CIG) has recently emerged as an efficient alternative for acquiring high-quality training data for camouflaged object detection (COD). However, existing CIG methods still suffer from a substantial gap to real camouflaged imagery: generated images either lack sufficient camouflage due to weak visual similarity, or exhibit cluttered backgrounds that are semantically inconsistent with foreground targets. To address these limitations, we propose ReamCamo, a unified out-painting based framework for realistic camouflaged image generation. ReamCamo explicitly introduces additional layout controls to regulate global image structure, thereby improving semantic coherence between foreground objects and generated backgrounds. Moreover, we construct a multi-modal textual-visual condition by combining a unified fine-grained textual task description with texture-oriented background retrieval, which jointly guides the generation process to enhance visual fidelity and realism. To quantitatively assess camouflage quality, we further introduce a background-foreground distribution divergence metric that measures the effectiveness of camouflage in generated images. Extensive experiments and visualizations demonstrate the effectiveness of our proposed framework.
Existing RGB-T salient object detection methods predominantly rely on manually aligned and annotated datasets, struggling to handle real-world scenarios with raw, unaligned RGB-T image pairs. In practical applications, due to significant cross-modal disparities such as spatial misalignment, scale variations, and viewpoint shifts, the performance of current methods drastically deteriorates on unaligned datasets. To address this issue, we propose an efficient RGB-T SOD method for real-world unaligned image pairs, termed Thin-Plate Spline-driven Semantic Correlation Learning Network (TPS-SCL). We employ a dual-stream MobileViT as the encoder, combined with efficient Mamba scanning mechanisms, to effectively model correlations between the two modalities while maintaining low parameter counts and computational overhead. To suppress interference from redundant background information during alignment, we design a Semantic Correlation Constraint Module (SCCM) to hierarchically constrain salient features. Furthermore, we introduce a Thin-Plate Spline Alignment Module (TPSAM) to mitigate spatial discrepancies between modalities. Additionally, a Cross-Modal Correlation Module (CMCM) is incorporated to fully explore and integrate inter-modal dependencies, enhancing detection performance. Extensive experiments on various datasets demonstrate that TPS-SCL attains state-of-the-art (SOTA) performance among existing lightweight SOD methods and outperforms mainstream RGB-T SOD approaches.
Heterogeneous graph neural networks (HGNNs) have achieved strong performance in many real-world applications, yet targeted backdoor poisoning on heterogeneous graphs remains less studied. We consider backdoor attacks for heterogeneous node classification, where an adversary injects a small set of trigger nodes and connections during training to force specific victim nodes to be misclassified into an attacker-chosen label at test time while preserving clean performance. We propose HeteroHBA, a generative backdoor framework that selects influential auxiliary neighbors for trigger attachment via saliency-based screening and synthesizes diverse trigger features and connection patterns to better match the local heterogeneous context. To improve stealthiness, we combine Adaptive Instance Normalization (AdaIN) with a Maximum Mean Discrepancy (MMD) loss to align the trigger feature distribution with benign statistics, thereby reducing detectability, and we optimize the attack with a bilevel objective that jointly promotes attack success and maintains clean accuracy. Experiments on multiple real-world heterogeneous graphs with representative HGNN architectures show that HeteroHBA consistently achieves higher attack success than prior backdoor baselines with comparable or smaller impact on clean accuracy; moreover, the attack remains effective under our heterogeneity-aware structural defense, CSD. These results highlight practical backdoor risks in heterogeneous graph learning and motivate the development of stronger defenses.
Deep neural network-based classifiers are prone to errors when processing adversarial examples (AEs). AEs are minimally perturbed input data undetectable to humans posing significant risks to security-dependent applications. Hence, extensive research has been undertaken to develop defense mechanisms that mitigate their threats. Most existing methods primarily focus on discriminating AEs based on the input sample features, emphasizing AE detection without addressing the correct sample categorization before an attack. While some tasks may only require mere rejection on detected AEs, others necessitate identifying the correct original input category such as traffic sign recognition in autonomous driving. The objective of this study is to propose a method for rectifying AEs to estimate the correct labels of their original inputs. Our method is based on re-attacking AEs to move them beyond the decision boundary for accurate label prediction, effectively addressing the issue of rectifying minimally perceptible AEs created using white-box attack methods. However, challenge remains with respect to effectively rectifying AEs produced by black-box attacks at a distance from the boundary, or those misclassified into low-confidence categories by targeted attacks. By adopting a straightforward approach of only considering AEs as inputs, the proposed method can address diverse attacks while avoiding the requirement of parameter adjustments or preliminary training. Results demonstrate that the proposed method exhibits consistent performance in rectifying AEs generated via various attack methods, including targeted and black-box attacks. Moreover, it outperforms conventional rectification and input transformation methods in terms of stability against various attacks.
Early detection of chronic kidney disease (CKD) is essential for preventing progression to end-stage renal disease. However, existing screening tools - primarily developed using populations from high-income countries - often underperform in Bangladesh and South Asia, where risk profiles differ. Most of these tools rely on simple additive scoring functions and are based on data from patients with advanced-stage CKD. Consequently, they fail to capture complex interactions among risk factors and are limited in predicting early-stage CKD. Our objective was to develop and evaluate an explainable machine learning (ML) framework for community-based early-stage CKD screening for low-resource settings, tailored to the Bangladeshi and South Asian population context. We used a community-based dataset from Bangladesh, the first such CKD dataset in South and South Asia, and evaluated twelve ML classifiers across multiple feature domains. Ten complementary feature selection techniques were applied to identify robust, generalizable predictors. The final models were assessed using 10-fold cross-validation. External validation was conducted on three independent datasets from India, the UAE, and Bangladesh. SHAP (SHapley Additive exPlanations) was used to provide model explainability. An ML model trained on an RFECV-selected feature subset achieved a balanced accuracy of 90.40%, whereas minimal non-pathology-test features demonstrated excellent predictive capability with a balanced accuracy of 89.23%, often outperforming larger or full feature sets. Compared with existing screening tools, the proposed models achieved substantially higher accuracy and sensitivity while requiring fewer and more accessible inputs. External validation confirmed strong generalizability with 78% to 98% sensitivity. SHAP interpretation identified clinically meaningful predictors consistent with established CKD risk factors.
Locating objects for the visually impaired is a significant challenge and is something no one can get used to over time. However, this hinders their independence and could push them towards risky and dangerous scenarios. Hence, in the spirit of making the visually challenged more self-sufficient, we present SonoVision, a smart-phone application that helps them find everyday objects using sound cues through earphones/headphones. This simply means, if an object is on the right or left side of a user, the app makes a sinusoidal sound in a user's respective ear through ear/headphones. However, to indicate objects located directly in front, both the left and right earphones are rung simultaneously. These sound cues could easily help a visually impaired individual locate objects with the help of their smartphones and reduce the reliance on people in their surroundings, consequently making them more independent. This application is made with the flutter development platform and uses the Efficientdet-D2 model for object detection in the backend. We believe the app will significantly assist the visually impaired in a safe and user-friendly manner with its capacity to work completely offline. Our application can be accessed here https://github.com/MohammedZ666/SonoVision.git.