Recommendation systems are algorithms that provide personalized suggestions to users based on their preferences and behavior.
Sequential recommender systems rank relevant items by modeling a user's interaction history and computing the inner product between the resulting user representation and stored item embeddings. To avoid the significant memory overhead of storing large item sets, the generative recommendation paradigm instead models each item as a series of discrete semantic codes. Here, the next item is predicted by an autoregressive model that generates the code sequence corresponding to the predicted item. However, despite promising ranking capabilities on small datasets, these methods have yet to surpass traditional sequential recommenders on large item sets, limiting their adoption in the very scenarios they were designed to address. To resolve this, we propose MSCGRec, a Multimodal Semantic and Collaborative Generative Recommender. MSCGRec incorporates multiple semantic modalities and introduces a novel self-supervised quantization learning approach for images based on the DINO framework. Additionally, MSCGRec fuses collaborative and semantic signals by extracting collaborative features from sequential recommenders and treating them as a separate modality. Finally, we propose constrained sequence learning that restricts the large output space during training to the set of permissible tokens. We empirically demonstrate on three large real-world datasets that MSCGRec outperforms both sequential and generative recommendation baselines and provide an extensive ablation study to validate the impact of each component.
Clothing recommendation extends beyond merely generating personalized outfits; it serves as a crucial medium for aesthetic guidance. However, existing methods predominantly rely on user-item-outfit interaction behaviors while overlooking explicit representations of clothing aesthetics. To bridge this gap, we present the AesRec benchmark dataset featuring systematic quantitative aesthetic annotations, thereby enabling the development of aesthetics-aligned recommendation systems. Grounded in professional apparel quality standards and fashion aesthetic principles, we define a multidimensional set of indicators. At the item level, six dimensions are independently assessed: silhouette, chromaticity, materiality, craftsmanship, wearability, and item-level impression. Transitioning to the outfit level, the evaluation retains the first five core attributes while introducing stylistic synergy, visual harmony, and outfit-level impression as distinct metrics to capture the collective aesthetic impact. Given the increasing human-like proficiency of Vision-Language Models in multimodal understanding and interaction, we leverage them for large-scale aesthetic scoring. We conduct rigorous human-machine consistency validation on a fashion dataset, confirming the reliability of the generated ratings. Experimental results based on AesRec further demonstrate that integrating quantified aesthetic information into clothing recommendation models can provide aesthetic guidance for users while fulfilling their personalized requirements.
Route recommendation systems commonly adopt a multi-stage pipeline involving fine-ranking and re-ranking to produce high-quality ordered recommendations. However, this paradigm faces three critical limitations. First, there is a misalignment between offline training objectives and online metrics. Offline gains do not necessarily translate to online improvements. Actual performance must be validated through A/B testing, which may potentially compromise the user experience. Second, redundancy elimination relies on rigid, handcrafted rules that lack adaptability to the high variance in user intent and the unstructured complexity of real-world scenarios. Third, the strict separation between fine-ranking and re-ranking stages leads to sub-optimal performance. Since each module is optimized in isolation, the fine-ranking stage remains oblivious to the list-level objectives (e.g., diversity) targeted by the re-ranker, thereby preventing the system from achieving a jointly optimized global optimum. To overcome these intertwined challenges, we propose \textbf{SCASRec} (\textbf{S}elf-\textbf{C}orrecting and \textbf{A}uto-\textbf{S}topping \textbf{Rec}ommendation), a unified generative framework that integrates ranking and redundancy elimination into a single end-to-end process. SCASRec introduces a stepwise corrective reward (SCR) to guide list-wise refinement by focusing on hard samples, and employs a learnable End-of-Recommendation (EOR) token to terminate generation adaptively when no further improvement is expected. Experiments on two large-scale, open-sourced route recommendation datasets demonstrate that SCASRec establishes an SOTA in offline and online settings. SCASRec has been fully deployed in a real-world navigation app, demonstrating its effectiveness.
Studies on recommendations in social media have mainly analyzed the quality of recommended items (e.g., their diversity or biases) and the impact of recommendation policies (e.g., in comparison with purely chronological policies). We use a data donation program, collecting more than 2.5 million friend recommendations made to 682 volunteers on X over a year, to study instead how real-world recommenders learn, represent and process political and social attributes of users inside the so-called black boxes of AI systems. Using publicly available knowledge on the architecture of the recommender, we inferred the positions of recommended users in its embedding space. Leveraging ideology scaling calibrated with political survey data, we analyzed the political position of users in our study (N=26,509 among volunteers and recommended contacts) among several attributes, including age and gender. Our results show that the platform's recommender system produces a spatial ordering of users that is highly correlated with their Left-Right positions (Pearson rho=0.887, p-value < 0.0001), and that cannot be explained by socio-demographic attributes. These results open new possibilities for studying the interaction between human and AI systems. They also raise important questions linked to the legal definition of algorithmic profiling in data privacy regulation by blurring the line between active and passive profiling. We explore new constrained recommendation methods enabled by our results, limiting the political information in the recommender as a potential tool for privacy compliance capable of preserving recommendation relevance.
A core research question in recommender systems is to propose batches of highly relevant and diverse items, that is, items personalized to the user's preferences, but which also might get the user out of their comfort zone. This diversity might induce properties of serendipidity and novelty which might increase user engagement or revenue. However, many real-life problems arise in that case: e.g., avoiding to recommend distinct but too similar items to reduce the churn risk, and computational cost for large item libraries, up to millions of items. First, we consider the case when the user feedback model is perfectly observed and known in advance, and introduce an efficient algorithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the user history. Second, we propose an approach to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations can be enhanced if it leads to positive feedback, and vice-versa. Finally, we illustrate the performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on movie recommendation and drug repurposing.
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
Cold-start exploration is a core challenge in large-scale recommender systems: new or data-sparse items must receive traffic to estimate value, but over-exploration harms users and wastes impressions. In practice, Thompson Sampling (TS) is often initialized with a uniform Beta(1,1) prior, implicitly assuming a 50% success rate for unseen items. When true base rates are far lower, this optimistic prior systematically over-allocates to weak items. The impact is amplified by batched policy updates and pipeline latency: for hours, newly launched items can remain effectively "no data," so the prior dominates allocation before feedback is incorporated. We propose Dynamic Prior Thompson Sampling, a prior design that directly controls the probability that a new arm outcompetes the incumbent winner. Our key contribution is a closed-form quadratic solution for the prior mean that enforces P(X_j > Y_k) = epsilon at introduction time, making exploration intensity predictable and tunable while preserving TS Bayesian updates. Across Monte Carlo validation, offline batched simulations, and a large-scale online experiment on a thumbnail personalization system serving millions of users, dynamic priors deliver precise exploration control and improved efficiency versus a uniform-prior baseline.
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
This paper proposes a graph-augmented reasoning framework for tobacco pest and disease management that integrates structured domain knowledge into large language models. Building on GraphRAG, we construct a domain-specific knowledge graph and retrieve query-relevant subgraphs to provide relational evidence during answer generation. The framework adopts ChatGLM as the Transformer backbone with LoRA-based parameter-efficient fine-tuning, and employs a graph neural network to learn node representations that capture symptom-disease-treatment dependencies. By explicitly modeling diseases, symptoms, pesticides, and control measures as linked entities, the system supports evidence-aware retrieval beyond surface-level text similarity. Retrieved graph evidence is incorporated into the LLM input to guide generation toward domain-consistent recommendations and to mitigate hallucinated or inappropriate treatments. Experimental results show consistent improvements over text-only baselines, with the largest gains observed on multi-hop and comparative reasoning questions that require chaining multiple relations.
Large language models (LLMs) enable powerful zero-shot recommendations by leveraging broad contextual knowledge, yet predictive uncertainty and embedded biases threaten reliability and fairness. This paper studies how uncertainty and fairness evaluations affect the accuracy, consistency, and trustworthiness of LLM-generated recommendations. We introduce a benchmark of curated metrics and a dataset annotated for eight demographic attributes (31 categorical values) across two domains: movies and music. Through in-depth case studies, we quantify predictive uncertainty (via entropy) and demonstrate that Google DeepMind's Gemini 1.5 Flash exhibits systematic unfairness for certain sensitive attributes; measured similarity-based gaps are SNSR at 0.1363 and SNSV at 0.0507. These disparities persist under prompt perturbations such as typographical errors and multilingual inputs. We further integrate personality-aware fairness into the RecLLM evaluation pipeline to reveal personality-linked bias patterns and expose trade-offs between personalization and group fairness. We propose a novel uncertainty-aware evaluation methodology for RecLLMs, present empirical insights from deep uncertainty case studies, and introduce a personality profile-informed fairness benchmark that advances explainability and equity in LLM recommendations. Together, these contributions establish a foundation for safer, more interpretable RecLLMs and motivate future work on multi-model benchmarks and adaptive calibration for trustworthy deployment.