College of Computer Science and Engineering, Northeastern University, Shenyang, China
Abstract:Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout by synthesizing complex, longitudinal cancer Electronic Health Records (EHRs). However, their implementation in this critical field faces three primary challenges: the inability to effectively process the extensive length and multilingual nature of patient records for accurate temporal analysis; a heightened risk of clinical hallucination, as conventional grounding techniques such as Retrieval-Augmented Generation (RAG) do not adequately incorporate process-oriented clinical guidelines; and unreliable evaluation metrics that hinder the validation of AI systems in oncology. To address these issues, we propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records. The framework operates by transforming unstructured, longitudinal EHRs into patient-specific Temporal Knowledge Graphs (TKGs) to capture long-range dependencies, and then grounding the decision support process by aligning these real-world patient trajectories with a normative guideline knowledge graph. This approach provides oncologists with evidence-grounded decision support by generating a high-fidelity clinical summary and an actionable recommendation. We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset. In these diverse settings, CliCARE significantly outperforms strong baselines, including leading long-context LLMs and Knowledge Graph-enhanced RAG methods. The clinical validity of our results is supported by a robust evaluation protocol, which demonstrates a high correlation with assessments made by expert oncologists.
Abstract:AI in Math deals with mathematics in a constructive manner so that reasoning becomes automated, less laborious, and less error-prone. For algorithms, the question becomes how to automate analyses for specific problems. For the first time, this work provides an automatic method for approximation analysis on a well-studied problem in theoretical computer science: computing approximate Nash equilibria in two-player games. We observe that such algorithms can be reformulated into a search-and-mix paradigm, which involves a search phase followed by a mixing phase. By doing so, we are able to fully automate the procedure of designing and analyzing the mixing phase. For example, we illustrate how to perform our method with a program to analyze the approximation bounds of all the algorithms in the literature. Same approximation bounds are computed without any hand-written proof. Our automatic method heavily relies on the LP-relaxation structure in approximate Nash equilibria. Since many approximation algorithms and online algorithms adopt the LP relaxation, our approach may be extended to automate the analysis of other algorithms.