Abstract:Recent advances in recommender systems rely on external resources such as knowledge graphs or large language models to enhance recommendations, which limit applicability in real-world settings due to data dependency and computational overhead. Although knowledge-free models are able to bolster recommendations by direct edge operations as well, the absence of augmentation primitives drives them to fall short in bridging semantic and structural gaps as high-quality paradigm substitutes. Unlike existing diffusion-based works that remodel user-item interactions, this work proposes NodeDiffRec, a pioneering knowledge-free augmentation framework that enables fine-grained node-level graph generation for recommendations and expands the scope of restricted augmentation primitives via diffusion. By synthesizing pseudo-items and corresponding interactions that align with the underlying distribution for injection, and further refining user preferences through a denoising preference modeling process, NodeDiffRec dramatically enhances both semantic diversity and structural connectivity without external knowledge. Extensive experiments across diverse datasets and recommendation algorithms demonstrate the superiority of NodeDiffRec, achieving State-of-the-Art (SOTA) performance, with maximum average performance improvement 98.6% in Recall@5 and 84.0% in NDCG@5 over selected baselines.
Abstract:Accurate traffic forecasting and swift inference provision are essential for intelligent transportation systems. However, the present Graph Convolutional Network (GCN)-based approaches cannot extract and fuse multi-granular spatiotemporal features across various spatial and temporal scales sufficiently, proven to yield less accurate forecasts. Besides, additional feature extraction branches introduced in prior studies critically increased model complexity and extended inference time, making it challenging to provide fast inference for traffic forecasting. In this paper, we propose MultiGran-STGCNFog, an efficient fog distributed inference system with a novel traffic forecasting model that employs multi-granular spatiotemporal feature fusion on generated dynamic traffic graphs to fully capture interdependent traffic dynamics. The proposed scheduling algorithm GA-DPHDS, optimizing layer execution order and layer-device scheduling scheme simultaneously, contributes to considerable inference throughput improvement by leveraging heterogeneous fog devices in a pipelined manner. Extensive experiments on real-world datasets demonstrate the superiority of the proposed method over selected baselines.