Melanoma detection is vital for early diagnosis and effective treatment. While deep learning models on dermoscopic images have shown promise, they require specialized equipment, limiting their use in broader clinical settings. This study introduces a multi-modal melanoma detection system using conventional photo images, making it more accessible and versatile. Our system integrates image data with tabular metadata, such as patient demographics and lesion characteristics, to improve detection accuracy. It employs a multi-modal neural network combining image and metadata processing and supports a two-step model for cases with or without metadata. A three-stage pipeline further refines predictions by boosting algorithms and enhancing performance. To address the challenges of a highly imbalanced dataset, specific techniques were implemented to ensure robust training. An ablation study evaluated recent vision architectures, boosting algorithms, and loss functions, achieving a peak Partial ROC AUC of 0.18068 (0.2 maximum) and top-15 retrieval sensitivity of 0.78371. Results demonstrate that integrating photo images with metadata in a structured, multi-stage pipeline yields significant performance improvements. This system advances melanoma detection by providing a scalable, equipment-independent solution suitable for diverse healthcare environments, bridging the gap between specialized and general clinical practices.
Inspecting the undercarriage of used vehicles is a labor-intensive task that requires inspectors to crouch or crawl underneath each vehicle to thoroughly examine it. Additionally, online buyers rarely see undercarriage photos. We present an end-to-end pipeline that utilizes a three-camera rig to capture videos of the undercarriage as the vehicle drives over it, and produces an interactive 3D model of the undercarriage. The 3D model enables inspectors and customers to rotate, zoom, and slice through the undercarriage, allowing them to detect rust, leaks, or impact damage in seconds, thereby improving both workplace safety and buyer confidence. Our primary contribution is a rig-aware Structure-from-Motion (SfM) pipeline specifically designed to overcome the challenges of wide-angle lens distortion and low-parallax scenes. Our method overcomes the challenges of wide-angle lens distortion and low-parallax scenes by integrating precise camera calibration, synchronized video streams, and strong geometric priors from the camera rig. We use a constrained matching strategy with learned components, the DISK feature extractor, and the attention-based LightGlue matcher to generate high-quality sparse point clouds that are often unattainable with standard SfM pipelines. These point clouds seed the Gaussian splatting process to generate photorealistic undercarriage models that render in real-time. Our experiments and ablation studies demonstrate that our design choices are essential to achieve state-of-the-art quality.
WiFi-based 3D human pose estimation offers a low-cost and privacy-preserving alternative to vision-based systems for smart interaction. However, existing approaches rely on visual 3D poses as supervision and directly regress CSI to a camera-based coordinate system. We find that this practice leads to coordinate overfitting: models memorize deployment-specific WiFi transceiver layouts rather than only learning activity-relevant representations, resulting in severe generalization failures. To address this challenge, we present PerceptAlign, the first geometry-conditioned framework for WiFi-based cross-layout pose estimation. PerceptAlign introduces a lightweight coordinate unification procedure that aligns WiFi and vision measurements in a shared 3D space using only two checkerboards and a few photos. Within this unified space, it encodes calibrated transceiver positions into high-dimensional embeddings and fuses them with CSI features, making the model explicitly aware of device geometry as a conditional variable. This design forces the network to disentangle human motion from deployment layouts, enabling robust and, for the first time, layout-invariant WiFi pose estimation. To support systematic evaluation, we construct the largest cross-domain 3D WiFi pose estimation dataset to date, comprising 21 subjects, 5 scenes, 18 actions, and 7 device layouts. Experiments show that PerceptAlign reduces in-domain error by 12.3% and cross-domain error by more than 60% compared to state-of-the-art baselines. These results establish geometry-conditioned learning as a viable path toward scalable and practical WiFi sensing.
3D Gaussian Splatting (3DGS) has emerged as a prominent 3D representation for high-fidelity and real-time rendering. Prior work has coupled physics simulation with Gaussians, but predominantly targets soft, deformable materials, leaving brittle fracture largely unresolved. This stems from two key obstacles: the lack of volumetric interiors with coherent textures in GS representation, and the absence of fracture-aware simulation methods for Gaussians. To address these challenges, we introduce GaussianFluent, a unified framework for realistic simulation and rendering of dynamic object states. First, it synthesizes photorealistic interiors by densifying internal Gaussians guided by generative models. Second, it integrates an optimized Continuum Damage Material Point Method (CD-MPM) to enable brittle fracture simulation at remarkably high speed. Our approach handles complex scenarios including mixed-material objects and multi-stage fracture propagation, achieving results infeasible with previous methods. Experiments clearly demonstrate GaussianFluent's capability for photo-realistic, real-time rendering with structurally consistent interiors, highlighting its potential for downstream application, such as VR and Robotics.
Accurate individual identification is essential for monitoring rare amphibians, yet invasive marking is often unsuitable for critically endangered species. We evaluate state-of-the-art computer-vision methods for photographic re-identification of the Hula painted frog (Latonia nigriventer) using 1,233 ventral images from 191 individuals collected during 2013-2020 capture-recapture surveys. We compare deep local-feature matching in a zero-shot setting with deep global-feature embedding models. The local-feature pipeline achieves 98% top-1 closed-set identification accuracy, outperforming all global-feature models; fine-tuning improves the best global-feature model to 60% top-1 (91% top-10) but remains below local matching. To combine scalability with accuracy, we implement a two-stage workflow in which a fine-tuned global-feature model retrieves a short candidate list that is re-ranked by local-feature matching, reducing end-to-end runtime from 6.5-7.8 hours to ~38 minutes while maintaining ~96% top-1 closed-set accuracy on the labeled dataset. Separation of match scores between same- and different-individual pairs supports thresholding for open-set identification, enabling practical handling of novel individuals. We deploy this pipeline as a web application for routine field use, providing rapid, standardized, non-invasive identification to support conservation monitoring and capture-recapture analyses. Overall, in this species, zero-shot deep local-feature matching outperformed global-feature embedding and provides a strong default for photo-identification.
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
We present AutoTour, a system that enhances user exploration by automatically generating fine-grained landmark annotations and descriptive narratives for photos captured by users. The key idea of AutoTour is to fuse visual features extracted from photos with nearby geospatial features queried from open matching databases. Unlike existing tour applications that rely on pre-defined content or proprietary datasets, AutoTour leverages open and extensible data sources to provide scalable and context-aware photo-based guidance. To achieve this, we design a training-free pipeline that first extracts and filters relevant geospatial features around the user's GPS location. It then detects major landmarks in user photos through VLM-based feature detection and projects them into the horizontal spatial plane. A geometric matching algorithm aligns photo features with corresponding geospatial entities based on their estimated distance and direction. The matched features are subsequently grounded and annotated directly on the original photo, accompanied by large language model-generated textual and audio descriptions to provide an informative, tour-like experience. We demonstrate that AutoTour can deliver rich, interpretable annotations for both iconic and lesser-known landmarks, enabling a new form of interactive, context-aware exploration that bridges visual perception and geospatial understanding.
Vision-Language Models (VLMs) are increasingly deployed in socially consequential settings, raising concerns about social bias driven by demographic cues. A central challenge in measuring such social bias is attribution under visual confounding: real-world images entangle race and gender with correlated factors such as background and clothing, obscuring attribution. We propose a \textbf{face-only counterfactual evaluation paradigm} that isolates demographic effects while preserving real-image realism. Starting from real photographs, we generate counterfactual variants by editing only facial attributes related to race and gender, keeping all other visual factors fixed. Based on this paradigm, we construct \textbf{FOCUS}, a dataset of 480 scene-matched counterfactual images across six occupations and ten demographic groups, and propose \textbf{REFLECT}, a benchmark comprising three decision-oriented tasks: two-alternative forced choice, multiple-choice socioeconomic inference, and numeric salary recommendation. Experiments on five state-of-the-art VLMs reveal that demographic disparities persist under strict visual control and vary substantially across task formulations. These findings underscore the necessity of controlled, counterfactual audits and highlight task design as a critical factor in evaluating social bias in multimodal models.
Synthetic Aperture Radar (SAR) provides robust all-weather imaging capabilities; however, translating SAR observations into photo-realistic optical images remains a fundamentally ill-posed problem. Current approaches are often hindered by the inherent speckle noise and geometric distortions of SAR data, which frequently result in semantic misinterpretation, ambiguous texture synthesis, and structural hallucinations. To address these limitations, a novel SAR-to-Optical (S2O) translation framework is proposed, integrating three core technical contributions: (i) Cross-Modal Semantic Alignment, which establishes an Optical-Aware SAR Encoder by distilling robust semantic priors from an Optical Teacher into a SAR Student (ii) Semantically-Grounded Generative Guidance, realized by a Semantically-Grounded ControlNet that integrates class-aware text prompts for global context with hierarchical visual prompts for local spatial guidance; and (iii) an Uncertainty-Aware Objective, which explicitly models aleatoric uncertainty to dynamically modulate the reconstruction focus, effectively mitigating artifacts caused by speckle-induced ambiguity. Extensive experiments demonstrate that the proposed method achieves superior perceptual quality and semantic consistency compared to state-of-the-art approaches.
Unified large multimodal models (LMMs) have achieved remarkable progress in general-purpose multimodal understanding and generation. However, they still operate under a ``one-size-fits-all'' paradigm and struggle to model user-specific concepts (e.g., generate a photo of \texttt{<maeve>}) in a consistent and controllable manner. Existing personalization methods typically rely on external retrieval, which is inefficient and poorly integrated into unified multimodal pipelines. Recent personalized unified models introduce learnable soft prompts to encode concept information, yet they either couple understanding and generation or depend on complex multi-stage training, leading to cross-task interference and ultimately to fuzzy or misaligned personalized knowledge. We present \textbf{OmniPersona}, an end-to-end personalization framework for unified LMMs that, for the first time, integrates personalized understanding, generation, and image editing within a single architecture. OmniPersona introduces structurally decoupled concept tokens, allocating dedicated subspaces for different tasks to minimize interference, and incorporates an explicit knowledge replay mechanism that propagates personalized attribute knowledge across tasks, enabling consistent personalized behavior. To systematically evaluate unified personalization, we propose \textbf{\texttt{OmniPBench}}, extending the public UnifyBench concept set with personalized editing tasks and cross-task evaluation protocols integrating understanding, generation, and editing. Experimental results demonstrate that OmniPersona delivers competitive and robust performance across diverse personalization tasks. We hope OmniPersona will serve as a strong baseline and spur further research on controllable, unified personalization.