Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
Image geolocation aims to infer capture locations based on visual content. Fundamentally, this constitutes a reasoning process composed of \textit{hypothesis-verification cycles}, requiring models to possess both geospatial reasoning capabilities and the ability to verify evidence against geographic facts. Existing methods typically internalize location knowledge and reasoning patterns into static memory via supervised training or trajectory-based reinforcement fine-tuning. Consequently, these methods are prone to factual hallucinations and generalization bottlenecks in open-world settings or scenarios requiring dynamic knowledge. To address these challenges, we propose a Hierarchical Localization Agent, called LocationAgent. Our core philosophy is to retain hierarchical reasoning logic within the model while offloading the verification of geographic evidence to external tools. To implement hierarchical reasoning, we design the RER architecture (Reasoner-Executor-Recorder), which employs role separation and context compression to prevent the drifting problem in multi-step reasoning. For evidence verification, we construct a suite of clue exploration tools that provide diverse evidence to support location reasoning. Furthermore, to address data leakage and the scarcity of Chinese data in existing datasets, we introduce CCL-Bench (China City Location Bench), an image geolocation benchmark encompassing various scene granularities and difficulty levels. Extensive experiments demonstrate that LocationAgent significantly outperforms existing methods by at least 30\% in zero-shot settings.
The widespread availability of generative artificial intelligence (GenAI) has created a pressing challenge in computer science (CS) education: how to incorporate powerful AI tools into programming coursework without undermining student learning through cognitive offloading. This paper presents an assessment model that permits the use of generative AI for take-home programming assignments while enforcing individual mastery through immediate, assignment-driven written quizzes. To promote authentic learning, these in-class, closed-book assessments are weighted more heavily than the assignments themselves and are specifically designed to verify the student's comprehension of the algorithms, structure, and implementation details of their submitted code. Preliminary empirical data were collected from an upper-level computer science course to examine the relationship between self-reported GenAI usage and performance on AI-free quizzes, exams, and final course grades. Statistical analyses revealed no meaningful linear correlation between GenAI usage levels and assessment outcomes, with Pearson correlation coefficients consistently near zero. These preliminary results suggest that allowing GenAI for programming assignments does not diminish students' mastery of course concepts when learning is verified through targeted, assignment-driven quizzes. Although limited by a small sample size, this study provides preliminary evidence that the risks of cognitive offloading can be mitigated by allowing AI-assisted programming practice while verifying understanding through assignment-driven, AI-free quizzes. The findings support the responsible adoption of open GenAI policies in upper-level CS courses, when paired with rigorous, independent assessment mechanisms.
Parallel programming is central to HPC and AI, but producing code that is correct and fast remains challenging, especially for OpenMP GPU offload, where data movement and tuning dominate. Autonomous coding agents can compile, test, and profile on target hardware, but outputs are brittle without domain scaffolding. We present ParaCodex, an HPC-engineer workflow that turns a Codex-based agent into an autonomous OpenMP GPU offload system using staged hotspot analysis, explicit data planning, correctness gating, and profiling-guided refinement. We evaluate translation from serial CPU kernels to OpenMP GPU offload kernels on HeCBench, Rodinia, and NAS. After excluding five kernels, ParaCodex succeeded on all 31 valid kernels. The generated kernels improved GPU time over reference OpenMP implementations in 25/31 cases, achieving geometric-mean speedups of 3x on HeCBench and 5x on Rodinia, and outperforming a zero-shot Codex baseline on all suites. We also evaluate CUDA to OpenMP offload translation on ParEval, where ParaCodex maintains high compilation and validation rates in code-only and end-to-end settings.
Training large language models requires distributing computation across many accelerators, yet practitioners select parallelism strategies (data, tensor, pipeline, ZeRO) through trial and error because no unified systematic framework predicts their behavior. We introduce placement semantics: each strategy is specified by how it places four training states (parameters, optimizer, gradients, activations) across devices using five modes (replicated, sharded, sharded-with-gather, materialized, offloaded). From placement alone, without implementation details, we derive memory consumption and communication volume. Our predictions match published results exactly: ZeRO-3 uses 8x less memory than data parallelism at 1.5x communication cost, as reported in the original paper. We prove two conditions (gradient integrity, state consistency) are necessary and sufficient for distributed training to match single-device results, and provide composition rules for combining strategies safely. The framework unifies ZeRO Stages 1-3, Fully Sharded Data Parallel (FSDP), tensor parallelism, and pipeline parallelism as instances with different placement choices.
Full parameter fine tuning is a key technique for adapting large language models (LLMs) to downstream tasks, but it incurs substantial memory overhead due to the need to cache extensive intermediate activations for backpropagation. This bottleneck makes full fine tuning of contemporary large scale LLMs challenging in practice. Existing distributed training frameworks such as DeepSpeed alleviate this issue using techniques like ZeRO and FSDP, which rely on multi GPU memory or CPU offloading, but often require additional hardware resources and reduce training speed. We introduce RevFFN, a memory efficient fine tuning paradigm for mixture of experts (MoE) LLMs. RevFFN employs carefully designed reversible Transformer blocks that allow reconstruction of layer input activations from outputs during backpropagation, eliminating the need to store most intermediate activations in memory. While preserving the expressive capacity of MoE architectures, this approach significantly reduces peak memory consumption for full parameter fine tuning. As a result, RevFFN enables efficient full fine tuning on a single consumer grade or server grade GPU.




SSD-offloaded training offers a practical and promising approach to making LLM training cost-effective. Building on gradient accumulation with micro-batches, this paper introduces GreedySnake, a new SSD-offloaded training system that employs vertical scheduling, which executes all microbatches of a layer before proceeding to the next. Compared to existing systems that use horizontal scheduling (i.e., executing micro-batches sequentially), GreedySnake achieves higher training throughput with smaller batch sizes, bringing the system much closer to the ideal scenario predicted by the roofline model. To further mitigate the I/O bottleneck, GreedySnake overlaps part of the optimization step with the forward pass of the next iteration. Experimental results on A100 GPUs show that GreedySnake achieves saturated training throughput improvements over ZeRO-Infinity: 1.96x on 1 GPU and 1.93x on 4 GPUs for GPT-65B, and 2.53x on 1 GPU for GPT-175B. The code is open-sourced at https://github.com/npz7yyk/GreedySnake




Reinforcement learning (RL) has achieved strong results, but deploying visual policies on resource-constrained edge devices remains challenging due to computational cost and communication latency. Many deployments therefore offload policy inference to a remote server, incurring network round trips and requiring transmission of high-dimensional observations. We introduce a split-policy architecture in which a small on-device encoder, implemented as OpenGL fragment-shader passes for broad embedded GPU support, transforms each observation into a compact feature tensor that is transmitted to a remote policy head. In RL, this communication overhead manifests as closed-loop decision latency rather than only per-request inference latency. The proposed approach reduces transmitted data, lowers decision latency in bandwidth-limited settings, and reduces server-side compute per request, whilst achieving broadly comparable learning performance by final return (mean over the final 100 episodes) in single-run benchmarks, with modest trade-offs in mean return. We evaluate across an NVIDIA Jetson Nano, a Raspberry Pi 4B, and a Raspberry Pi Zero 2 W, reporting learning results, on-device execution behaviour under sustained load, and end-to-end decision latency and scalability measurements under bandwidth shaping. Code for training, deployment, and measurement is released as open source.
The growth of million-token LLMs exposes the scalability limits of inference systems, where the KVCache dominates memory usage and data transfer overhead. Recent offloading systems migrate the KVCache to CPU memory and incorporate top-k attention to reduce the volume of data transferred from the CPU, while further applying system-level optimizations such as on-GPU caching and prefetching to lower transfer overhead. However, they overlook the CPU bottleneck in three aspects: (1) substantial overhead of fine-grained dynamic cache management performed on the CPU side, (2) significant transfer overhead from poor PCIe bandwidth utilization caused by heavy gathering operations at the CPU side, and (3) GPU runtime bubbles introduced by coarse-grained CPU-centric synchronization. To address these challenges, we propose CLO, a CPU-light KVCache offloading system via algorithm-system co-design. CLO features: (1) a coarse-grained head-wise approximate on-GPU caching strategy with negligible cache management cost, (2) seamless combination of data prefetching and on-GPU persistent caching for lower transfer overhead, (3) a zero-copy transfer engine to fully exploit PCIe bandwidth, and a GPU-centric synchronization method to eliminate GPU stalls. Evaluation on two widely-used LLMs demonstrates that CLO achieves comparable accuracy to state-of-the-art systems, while substantially minimizing CPU overhead, fully utilizing PCIe bandwidth, thus improving decoding throughput by 9.3%-66.6%. Our results highlight that algorithm-system co-design is essential for memory-constrained LLM inference on modern GPU platforms. We open source CLO at https://github.com/CommediaJW/CLO.
Visual Document Retrieval (VDR) typically operates as text-to-image retrieval using specialized bi-encoders trained to directly embed document images. We revisit a zero-shot generate-and-encode pipeline: a vision-language model first produces a detailed textual description of each document image, which is then embedded by a standard text encoder. On the ViDoRe-v2 benchmark, the method reaches 63.4% nDCG@5, surpassing the strongest specialised multi-vector visual document encoder. It also scales better to large collections and offers broader multilingual coverage. Analysis shows that modern vision-language models capture complex textual and visual cues with sufficient granularity to act as a reusable semantic proxy. By offloading modality alignment to pretrained vision-language models, our approach removes the need for computationally intensive text-image contrastive training and establishes a strong zero-shot baseline for future VDR systems.