Virtual try-on (VTON), also known as virtual fitting or digital try-on, is the ability to digitally try on clothes and accessories like tops, pants, glasses, hats, and make-up by fitting target products to reference person images/videos. It's gaining wide adoption in e-commerce.
We propose AvatarVTON, the first 4D virtual try-on framework that generates realistic try-on results from a single in-shop garment image, enabling free pose control, novel-view rendering, and diverse garment choices. Unlike existing methods, AvatarVTON supports dynamic garment interactions under single-view supervision, without relying on multi-view garment captures or physics priors. The framework consists of two key modules: (1) a Reciprocal Flow Rectifier, a prior-free optical-flow correction strategy that stabilizes avatar fitting and ensures temporal coherence; and (2) a Non-Linear Deformer, which decomposes Gaussian maps into view-pose-invariant and view-pose-specific components, enabling adaptive, non-linear garment deformations. To establish a benchmark for 4D virtual try-on, we extend existing baselines with unified modules for fair qualitative and quantitative comparisons. Extensive experiments show that AvatarVTON achieves high fidelity, diversity, and dynamic garment realism, making it well-suited for AR/VR, gaming, and digital-human applications.
Fashion image generation has so far focused on narrow tasks such as virtual try-on, where garments appear in clean studio environments. In contrast, editorial fashion presents garments through dynamic poses, diverse locations, and carefully crafted visual narratives. We introduce the task of virtual fashion photo-shoot, which seeks to capture this richness by transforming standardized garment images into contextually grounded editorial imagery. To enable this new direction, we construct the first large-scale dataset of garment-lookbook pairs, bridging the gap between e-commerce and fashion media. Because such pairs are not readily available, we design an automated retrieval pipeline that aligns garments across domains, combining visual-language reasoning with object-level localization. We construct a dataset with three garment-lookbook pair accuracy levels: high quality (10,000 pairs), medium quality (50,000 pairs), and low quality (300,000 pairs). This dataset offers a foundation for models that move beyond catalog-style generation and toward fashion imagery that reflects creativity, atmosphere, and storytelling.
We introduce the Virtual Fitting Room (VFR), a novel video generative model that produces arbitrarily long virtual try-on videos. Our VFR models long video generation tasks as an auto-regressive, segment-by-segment generation process, eliminating the need for resource-intensive generation and lengthy video data, while providing the flexibility to generate videos of arbitrary length. The key challenges of this task are twofold: ensuring local smoothness between adjacent segments and maintaining global temporal consistency across different segments. To address these challenges, we propose our VFR framework, which ensures smoothness through a prefix video condition and enforces consistency with the anchor video -- a 360-degree video that comprehensively captures the human's wholebody appearance. Our VFR generates minute-scale virtual try-on videos with both local smoothness and global temporal consistency under various motions, making it a pioneering work in long virtual try-on video generation.




We present LUIVITON, an end-to-end system for fully automated virtual try-on, capable of draping complex, multi-layer clothing onto diverse and arbitrarily posed humanoid characters. To address the challenge of aligning complex garments with arbitrary and highly diverse body shapes, we use SMPL as a proxy representation and separate the clothing-to-body draping problem into two correspondence tasks: 1) clothing-to-SMPL and 2) body-to-SMPL correspondence, where each has its unique challenges. While we address the clothing-to-SMPL fitting problem using a geometric learning-based approach for partial-to-complete shape correspondence prediction, we introduce a diffusion model-based approach for body-to-SMPL correspondence using multi-view consistent appearance features and a pre-trained 2D foundation model. Our method can handle complex geometries, non-manifold meshes, and generalizes effectively to a wide range of humanoid characters -- including humans, robots, cartoon subjects, creatures, and aliens, while maintaining computational efficiency for practical adoption. In addition to offering a fully automatic fitting solution, LUIVITON supports fast customization of clothing size, allowing users to adjust clothing sizes and material properties after they have been draped. We show that our system can produce high-quality 3D clothing fittings without any human labor, even when 2D clothing sewing patterns are not available.
Virtual try-on systems have long been hindered by heavy reliance on human body masks, limited fine-grained control over garment attributes, and poor generalization to real-world, in-the-wild scenarios. In this paper, we propose JCo-MVTON (Jointly Controllable Multi-Modal Diffusion Transformer for Mask-Free Virtual Try-On), a novel framework that overcomes these limitations by integrating diffusion-based image generation with multi-modal conditional fusion. Built upon a Multi-Modal Diffusion Transformer (MM-DiT) backbone, our approach directly incorporates diverse control signals -- such as the reference person image and the target garment image -- into the denoising process through dedicated conditional pathways that fuse features within the self-attention layers. This fusion is further enhanced with refined positional encodings and attention masks, enabling precise spatial alignment and improved garment-person integration. To address data scarcity and quality, we introduce a bidirectional generation strategy for dataset construction: one pipeline uses a mask-based model to generate realistic reference images, while a symmetric ``Try-Off'' model, trained in a self-supervised manner, recovers the corresponding garment images. The synthesized dataset undergoes rigorous manual curation, allowing iterative improvement in visual fidelity and diversity. Experiments demonstrate that JCo-MVTON achieves state-of-the-art performance on public benchmarks including DressCode, significantly outperforming existing methods in both quantitative metrics and human evaluations. Moreover, it shows strong generalization in real-world applications, surpassing commercial systems.
We present Dress&Dance, a video diffusion framework that generates high quality 5-second-long 24 FPS virtual try-on videos at 1152x720 resolution of a user wearing desired garments while moving in accordance with a given reference video. Our approach requires a single user image and supports a range of tops, bottoms, and one-piece garments, as well as simultaneous tops and bottoms try-on in a single pass. Key to our framework is CondNet, a novel conditioning network that leverages attention to unify multi-modal inputs (text, images, and videos), thereby enhancing garment registration and motion fidelity. CondNet is trained on heterogeneous training data, combining limited video data and a larger, more readily available image dataset, in a multistage progressive manner. Dress&Dance outperforms existing open source and commercial solutions and enables a high quality and flexible try-on experience.
Virtual try-on (VTON) is a crucial task for enhancing user experience in online shopping by generating realistic garment previews on personal photos. Although existing methods have achieved impressive results, they struggle with long-sleeve-to-short-sleeve conversions-a common and practical scenario-often producing unrealistic outputs when exposed skin is underrepresented in the original image. We argue that this challenge arises from the ''majority'' completion rule in current VTON models, which leads to inaccurate skin restoration in such cases. To address this, we propose UR-VTON (Undress-Redress Virtual Try-ON), a novel, training-free framework that can be seamlessly integrated with any existing VTON method. UR-VTON introduces an ''undress-to-redress'' mechanism: it first reveals the user's torso by virtually ''undressing,'' then applies the target short-sleeve garment, effectively decomposing the conversion into two more manageable steps. Additionally, we incorporate Dynamic Classifier-Free Guidance scheduling to balance diversity and image quality during DDPM sampling, and employ Structural Refiner to enhance detail fidelity using high-frequency cues. Finally, we present LS-TON, a new benchmark for long-sleeve-to-short-sleeve try-on. Extensive experiments demonstrate that UR-VTON outperforms state-of-the-art methods in both detail preservation and image quality. Code will be released upon acceptance.
Virtual try-on seeks to generate photorealistic images of individuals in desired garments, a task that must simultaneously preserve personal identity and garment fidelity for practical use in fashion retail and personalization. However, existing methods typically handle upper and lower garments separately, rely on heavy preprocessing, and often fail to preserve person-specific cues such as tattoos, accessories, and body shape-resulting in limited realism and flexibility. To this end, we introduce MuGa-VTON, a unified multi-garment diffusion framework that jointly models upper and lower garments together with person identity in a shared latent space. Specifically, we proposed three key modules: the Garment Representation Module (GRM) for capturing both garment semantics, the Person Representation Module (PRM) for encoding identity and pose cues, and the A-DiT fusion module, which integrates garment, person, and text-prompt features through a diffusion transformer. This architecture supports prompt-based customization, allowing fine-grained garment modifications with minimal user input. Extensive experiments on the VITON-HD and DressCode benchmarks demonstrate that MuGa-VTON outperforms existing methods in both qualitative and quantitative evaluations, producing high-fidelity, identity-preserving results suitable for real-world virtual try-on applications.
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.




While recent advances in virtual try-on (VTON) have achieved realistic garment transfer to human subjects, its inverse task, virtual try-off (VTOFF), which aims to reconstruct canonical garment templates from dressed humans, remains critically underexplored and lacks systematic investigation. Existing works predominantly treat them as isolated tasks: VTON focuses on garment dressing while VTOFF addresses garment extraction, thereby neglecting their complementary symmetry. To bridge this fundamental gap, we propose the Two-Way Garment Transfer Model (TWGTM), to the best of our knowledge, the first unified framework for joint clothing-centric image synthesis that simultaneously resolves both mask-guided VTON and mask-free VTOFF through bidirectional feature disentanglement. Specifically, our framework employs dual-conditioned guidance from both latent and pixel spaces of reference images to seamlessly bridge the dual tasks. On the other hand, to resolve the inherent mask dependency asymmetry between mask-guided VTON and mask-free VTOFF, we devise a phased training paradigm that progressively bridges this modality gap. Extensive qualitative and quantitative experiments conducted across the DressCode and VITON-HD datasets validate the efficacy and competitive edge of our proposed approach.