Traditional Simultaneous Localization and Mapping (SLAM) systems often face limitations including coarse rendering quality, insufficient recovery of scene details, and poor robustness in dynamic environments. 3D Gaussian Splatting (3DGS), with its efficient explicit representation and high-quality rendering capabilities, offers a new reconstruction paradigm for SLAM. This survey comprehensively reviews key technical approaches for integrating 3DGS with SLAM. We analyze performance optimization of representative methods across four critical dimensions: rendering quality, tracking accuracy, reconstruction speed, and memory consumption, delving into their design principles and breakthroughs. Furthermore, we examine methods for enhancing the robustness of 3DGS-SLAM in complex environments such as motion blur and dynamic environments. Finally, we discuss future challenges and development trends in this area. This survey aims to provide a technical reference for researchers and foster the development of next-generation SLAM systems characterized by high fidelity, efficiency, and robustness.
Accurate vehicle localization is a critical challenge in urban environments where GPS signals are often unreliable. This paper presents a cooperative multi-sensor and multi-modal localization approach to address this issue by fusing data from vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. Our approach integrates cooperative data with a point cloud registration-based simultaneous localization and mapping (SLAM) algorithm. The system processes point clouds generated from diverse sensor modalities, including vehicle-mounted LiDAR and stereo cameras, as well as sensors deployed at intersections. By leveraging shared data from infrastructure, our method significantly improves localization accuracy and robustness in complex, GPS-noisy urban scenarios.
Task generation for underwater multi-robot inspections without prior knowledge of existing geometry can be achieved and optimized through examination of simultaneous localization and mapping (SLAM) data. By considering hardware parameters and environmental conditions, a set of tasks is generated from SLAM meshes and optimized through expected keypoint scores and distance-based pruning. In-water tests are used to demonstrate the effectiveness of the algorithm and determine the appropriate parameters. These results are compared to simulated Voronoi partitions and boustrophedon patterns for inspection coverage on a model of the test environment. The key benefits of the presented task discovery method include adaptability to unexpected geometry and distributions that maintain coverage while focusing on areas more likely to present defects or damage.
Representing and understanding 3D environments in a structured manner is crucial for autonomous agents to navigate and reason about their surroundings. While traditional Simultaneous Localization and Mapping (SLAM) methods generate metric reconstructions and can be extended to metric-semantic mapping, they lack a higher level of abstraction and relational reasoning. To address this gap, 3D scene graphs have emerged as a powerful representation for capturing hierarchical structures and object relationships. In this work, we propose an enhanced hierarchical 3D scene graph that integrates open-vocabulary features across multiple abstraction levels and supports object-relational reasoning. Our approach leverages a Vision Language Model (VLM) to infer semantic relationships. Notably, we introduce a task reasoning module that combines Large Language Models (LLM) and a VLM to interpret the scene graph's semantic and relational information, enabling agents to reason about tasks and interact with their environment more intelligently. We validate our method by deploying it on a quadruped robot in multiple environments and tasks, highlighting its ability to reason about them.
Loop closure detection (LCD) is a core component of simultaneous localization and mapping (SLAM): it identifies revisited places and enables pose-graph constraints that correct accumulated drift. Classic bag-of-words approaches such as DBoW are efficient but often degrade under appearance change and perceptual aliasing. In parallel, deep learning-based visual place recognition (VPR) descriptors (e.g., NetVLAD and Transformer-based models) offer stronger robustness, but their computational cost is often viewed as a barrier to real-time SLAM. In this paper, we empirically evaluate NetVLAD as an LCD module and compare it against DBoW on the KITTI dataset. We introduce a Fine-Grained Top-K precision-recall curve that better reflects LCD settings where a query may have zero or multiple valid matches. With Faiss-accelerated nearestneighbor search, NetVLAD achieves real-time query speed while improving accuracy and robustness over DBoW, making it a practical drop-in alternative for LCD in SLAM.
Decentralized Collaborative Simultaneous Localization And Mapping (C-SLAM) techniques often struggle to identify map overlaps due to significant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: (1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; (2) introducing robust outlier mitigation techniques critical to the use of these relative poses; and (3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
Decentralized collaborative simultaneous localization and mapping (C-SLAM) is essential to enable multirobot missions in unknown environments without relying on preexisting localization and communication infrastructure. This technology is anticipated to play a key role in the exploration of the Moon, Mars, and other planets. In this article, we share insights and lessons learned from C-SLAM experiments involving three robots operating on a Mars analogue terrain and communicating over an ad hoc network. We examine the impact of limited and intermittent communication on C-SLAM performance, as well as the unique localization challenges posed by planetary-like environments. Additionally, we introduce a novel dataset collected during our experiments, which includes real-time peer-to-peer inter-robot throughput and latency measurements. This dataset aims to support future research on communication-constrained, decentralized multirobot operations.
We release the S3LI Vulcano dataset, a multi-modal dataset towards development and benchmarking of Simultaneous Localization and Mapping (SLAM) and place recognition algorithms that rely on visual and LiDAR modalities. Several sequences are recorded on the volcanic island of Vulcano, from the Aeolian Islands in Sicily, Italy. The sequences provide users with data from a variety of environments, textures and terrains, including basaltic or iron-rich rocks, geological formations from old lava channels, as well as dry vegetation and water. The data (rmc.dlr.de/s3li_dataset) is accompanied by an open source toolkit (github.com/DLR-RM/s3li-toolkit) providing tools for generating ground truth poses as well as preparation of labelled samples for place recognition tasks.
Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLM). Existing editing methods rely on a rigid mapping from parameter or module modifications to output, which causes the generalization limitation in Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality.We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit.