Abstract:Dexterous robotic manipulation remains a longstanding challenge in robotics due to the high dimensionality of control spaces and the semantic complexity of object interaction. In this paper, we propose an object affordance-guided reinforcement learning framework that enables a multi-fingered robotic hand to learn human-like manipulation strategies more efficiently. By leveraging object affordance maps, our approach generates semantically meaningful grasp pose candidates that serve as both policy constraints and priors during training. We introduce a voting-based grasp classification mechanism to ensure functional alignment between grasp configurations and object affordance regions. Furthermore, we incorporate these constraints into a generalizable RL pipeline and design a reward function that unifies affordance-awareness with task-specific objectives. Experimental results across three manipulation tasks - cube grasping, jug grasping and lifting, and hammer use - demonstrate that our affordance-guided approach improves task success rates by an average of 15.4% compared to baselines. These findings highlight the critical role of object affordance priors in enhancing sample efficiency and learning generalizable, semantically grounded manipulation policies. For more details, please visit our project website https://sites.google.com/view/dora-manip.
Abstract:The latest research on Large Language Models (LLMs) has demonstrated significant advancement in the field of Natural Language Processing (NLP). However, despite this progress, there is still a lack of reliability in these models. This is due to the stochastic architecture of LLMs, which presents a challenge for users attempting to ascertain the reliability of a model's response. These responses may cause serious harm in high-risk environments or expensive failures in industrial contexts. Therefore, we introduce the framework REpeated Clustering of Scores Improving the Precision (RECSIP) which focuses on improving the precision of LLMs by asking multiple models in parallel, scoring and clustering their responses to ensure a higher reliability on the response. The evaluation of our reference implementation recsip on the benchmark MMLU-Pro using the models GPT-4o, Claude and Gemini shows an overall increase of 5.8 per cent points compared to the best used model.
Abstract:Recently, deep reinforcement learning (RL) has shown some impressive successes in robotic manipulation applications. However, training robots in the real world is nontrivial owing to sample efficiency and safety concerns. Sim-to-real transfer is proposed to address the aforementioned concerns but introduces a new issue called the reality gap. In this work, we introduce a sim-to-real learning framework for vision-based assembly tasks and perform training in a simulated environment by employing inputs from a single camera to address the aforementioned issues. We present a domain adaptation method based on cycle-consistent generative adversarial networks (CycleGAN) and a force control transfer approach to bridge the reality gap. We demonstrate that the proposed framework trained in a simulated environment can be successfully transferred to a real peg-in-hole setup.