Abstract:In machine learning forecasting, standard error metrics such as mean absolute error (MAE) and mean squared error (MSE) quantify discrepancies between predictions and target values. However, these metrics do not directly evaluate the physical and/or dynamical consistency of forecasts, an increasingly critical concern in scientific and engineering applications. Indeed, a fundamental yet often overlooked question is whether machine learning forecasts preserve the dynamical behavior of the underlying system. Addressing this issue is essential for assessing the fidelity of machine learning models and identifying potential failure modes, particularly in applications where maintaining correct dynamical behavior is crucial. In this work, we investigate the relationship between standard forecasting error metrics, such as MAE and MSE, and the dynamical properties of the underlying system. To achieve this goal, we use two recently developed dynamical indices: the instantaneous dimension ($d$), and the inverse persistence ($\theta$). Our results indicate that larger forecast errors -- e.g., higher MSE -- tend to occur in states with higher $d$ (higher complexity) and higher $\theta$ (lower persistence). To further assess dynamical consistency, we propose error metrics based on the dynamical indices that measure the discrepancy of the forecasted $d$ and $\theta$ versus their correct values. Leveraging these dynamical indices-based metrics, we analyze direct and recursive forecasting strategies for three canonical datasets -- Lorenz, Kuramoto-Sivashinsky equation, and Kolmogorov flow -- as well as a real-world weather forecasting task. Our findings reveal substantial distortions in dynamical properties in ML forecasts, especially for long forecast lead times or long recursive simulations, providing complementary information on ML forecast fidelity that can be used to improve ML models.
Abstract:With the rapid development of e-commerce, e-commerce platforms are facing an increasing number of fraud threats. Effectively identifying and preventing these fraudulent activities has become a critical research problem. Traditional fraud detection methods typically rely on supervised learning, which requires large amounts of labeled data. However, such data is often difficult to obtain, and the continuous evolution of fraudulent activities further reduces the adaptability and effectiveness of traditional methods. To address this issue, this study proposes an unsupervised e-commerce fraud detection algorithm based on SimCLR. The algorithm leverages the contrastive learning framework to effectively detect fraud by learning the underlying representations of transaction data in an unlabeled setting. Experimental results on the eBay platform dataset show that the proposed algorithm outperforms traditional unsupervised methods such as K-means, Isolation Forest, and Autoencoders in terms of accuracy, precision, recall, and F1 score, demonstrating strong fraud detection capabilities. The results confirm that the SimCLR-based unsupervised fraud detection method has broad application prospects in e-commerce platform security, improving both detection accuracy and robustness. In the future, with the increasing scale and diversity of datasets, the model's performance will continue to improve, and it could be integrated with real-time monitoring systems to provide more efficient security for e-commerce platforms.
Abstract:This study aims to develop an efficient and accurate model for detecting malicious comments, addressing the increasingly severe issue of false and harmful content on social media platforms. We propose a deep learning model that combines BERT and BiLSTM. The BERT model, through pre-training, captures deep semantic features of text, while the BiLSTM network excels at processing sequential data and can further model the contextual dependencies of text. Experimental results on the Jigsaw Unintended Bias in Toxicity Classification dataset demonstrate that the BERT+BiLSTM model achieves superior performance in malicious comment detection tasks, with a precision of 0.94, recall of 0.93, and accuracy of 0.94. This surpasses other models, including standalone BERT, TextCNN, TextRNN, and traditional machine learning algorithms using TF-IDF features. These results confirm the superiority of the BERT+BiLSTM model in handling imbalanced data and capturing deep semantic features of malicious comments, providing an effective technical means for social media content moderation and online environment purification.
Abstract:Long-term time-series forecasting is essential for planning and decision-making in economics, energy, and transportation, where long foresight is required. To obtain such long foresight, models must be both efficient and effective in processing long sequence. Recent advancements have enhanced the efficiency of these models; however, the challenge of effectively leveraging longer sequences persists. This is primarily due to the tendency of these models to overfit when presented with extended inputs, necessitating the use of shorter input lengths to maintain tolerable error margins. In this work, we investigate the multiscale modeling method and propose the Logsparse Decomposable Multiscaling (LDM) framework for the efficient and effective processing of long sequences. We demonstrate that by decoupling patterns at different scales in time series, we can enhance predictability by reducing non-stationarity, improve efficiency through a compact long input representation, and simplify the architecture by providing clear task assignments. Experimental results demonstrate that LDM not only outperforms all baselines in long-term forecasting benchmarks, but also reducing both training time and memory costs.
Abstract:Multimodal Large Language Models (MLLMs) have garnered significant attention recently and demonstrate outstanding capabilities in various tasks such as OCR, VQA, captioning, $\textit{etc}$. However, hallucination remains a persistent issue. While numerous methods have been proposed to mitigate hallucinations, achieving notable improvements, these methods primarily focus on mitigating hallucinations about $\textbf{object/noun-related}$ concepts. Verb concepts, crucial for understanding human actions, have been largely overlooked. In this paper, to the best of our knowledge, we are the $\textbf{first}$ to investigate the $\textbf{verb hallucination}$ phenomenon of MLLMs from various perspectives. Our findings reveal that most state-of-the-art MLLMs suffer from severe verb hallucination. To assess the effectiveness of existing mitigation methods for object concept hallucination on verb hallucination, we evaluated these methods and found that they do not effectively address verb hallucination. To address this issue, we propose a novel rich verb knowledge-based tuning method to mitigate verb hallucination. The experiment results demonstrate that our method significantly reduces hallucinations related to verbs. $\textit{Our code and data will be made publicly available}$.
Abstract:Existing deep learning approaches for travel mode choice modeling fail to inform modelers about their prediction uncertainty. Even when facing scenarios that are out of the distribution of training data, which implies high prediction uncertainty, these approaches still provide deterministic answers, potentially leading to misguidance. To address this limitation, this study introduces the concept of uncertainty from the field of explainable artificial intelligence into travel mode choice modeling. We propose a Bayesian neural network-based travel mode prediction model (BTMP) that quantifies the uncertainty of travel mode predictions, enabling the model itself to "know" and "tell" what it doesn't know. With BTMP, we further propose an uncertainty-guided active survey framework, which dynamically formulates survey questions representing travel mode choice scenarios with high prediction uncertainty. Through iterative collection of responses to these dynamically tailored survey questions, BTMP is iteratively trained to achieve the desired accuracy faster with fewer questions, thereby reducing survey costs. Experimental validation using synthetic datasets confirms the effectiveness of BTMP in quantifying prediction uncertainty. Furthermore, experiments, utilizing both synthetic and real-world data, demonstrate that the BTMP model, trained with the uncertainty-guided active survey framework, requires 20% to 50% fewer survey responses to match the performance of the model trained on randomly collected survey data. Overall, the proposed BTMP model and active survey framework innovatively incorporate uncertainty quantification into travel mode choice modeling, providing model users with essential insights into prediction reliability while optimizing data collection for deep learning model training in a cost-efficient manner.
Abstract:Reinforcement Learning (RL) is a widely employed technique in decision-making problems, encompassing two fundamental operations -- policy evaluation and policy improvement. Enhancing learning efficiency remains a key challenge in RL, with many efforts focused on using ensemble critics to boost policy evaluation efficiency. However, when using multiple critics, the actor in the policy improvement process can obtain different gradients. Previous studies have combined these gradients without considering their disagreements. Therefore, optimizing the policy improvement process is crucial to enhance learning efficiency. This study focuses on investigating the impact of gradient disagreements caused by ensemble critics on policy improvement. We introduce the concept of uncertainty of gradient directions as a means to measure the disagreement among gradients utilized in the policy improvement process. Through measuring the disagreement among gradients, we find that transitions with lower uncertainty of gradient directions are more reliable in the policy improvement process. Building on this analysis, we propose a method called von Mises-Fisher Experience Resampling (vMFER), which optimizes the policy improvement process by resampling transitions and assigning higher confidence to transitions with lower uncertainty of gradient directions. Our experiments demonstrate that vMFER significantly outperforms the benchmark and is particularly well-suited for ensemble structures in RL.
Abstract:Pose estimation is a crucial task in computer vision, enabling tracking and manipulating objects in images or videos. While several datasets exist for pose estimation, there is a lack of large-scale datasets specifically focusing on cluttered scenes with occlusions. This limitation is a bottleneck in the development and evaluation of pose estimation methods, particularly toward the goal of real-world application in environments where occlusions are common. Addressing this, we introduce PACE (Pose Annotations in Cluttered Environments), a large-scale benchmark designed to advance the development and evaluation of pose estimation methods in cluttered scenarios. PACE encompasses 54,945 frames with 257,673 annotations across 300 videos, covering 576 objects from 44 categories and featuring a mix of rigid and articulated items in cluttered scenes. To annotate the real-world data efficiently, we developed an innovative annotation system utilizing a calibrated 3-camera setup. We test state-of-the-art algorithms in PACE along two tracks: pose estimation, and object pose tracking, revealing the benchmark's challenges and research opportunities. We plan to release PACE as a public evaluation benchmark, along the annotations tools we developed, to stimulate further advancements in the field. Our code and data is available on https://github.com/qq456cvb/PACE.
Abstract:Embedding Human and Articulated Object Interaction (HAOI) in 3D is an important direction for a deeper human activity understanding. Different from previous works that use parametric and CAD models to represent humans and objects, in this work, we propose a novel 3D geometric primitive-based language to encode both humans and objects. Given our new paradigm, humans and objects are all compositions of primitives instead of heterogeneous entities. Thus, mutual information learning may be achieved between the limited 3D data of humans and different object categories. Moreover, considering the simplicity of the expression and the richness of the information it contains, we choose the superquadric as the primitive representation. To explore an effective embedding of HAOI for the machine, we build a new benchmark on 3D HAOI consisting of primitives together with their images and propose a task requiring machines to recover 3D HAOI using primitives from images. Moreover, we propose a baseline of single-view 3D reconstruction on HAOI. We believe this primitive-based 3D HAOI representation would pave the way for 3D HAOI studies. Our code and data are available at https://mvig-rhos.com/p3haoi.
Abstract:Stochastic filtering is a vibrant area of research in both control theory and statistics, with broad applications in many scientific fields. Despite its extensive historical development, there still lacks an effective method for joint parameter-state estimation in SDEs. The state-of-the-art particle filtering methods suffer from either sample degeneracy or information loss, with both issues stemming from the dynamics of the particles generated to represent system parameters. This paper provides a novel and effective approach for joint parameter-state estimation in SDEs via Rao-Blackwellization and modularization. Our method operates in two layers: the first layer estimates the system states using a bootstrap particle filter, and the second layer marginalizes out system parameters explicitly. This strategy circumvents the need to generate particles representing system parameters, thereby mitigating their associated problems of sample degeneracy and information loss. Moreover, our method employs a modularization approach when integrating out the parameters, which significantly reduces the computational complexity. All these designs ensure the superior performance of our method. Finally, a numerical example is presented to illustrate that our method outperforms existing approaches by a large margin.