Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:Generative Artificial Intelligence (GenAI) constitutes a transformative technological wave that reconfigures industries through its unparalleled capabilities for content creation, reasoning, planning, and multimodal understanding. This revolutionary force offers the most promising path yet toward solving one of engineering's grandest challenges: achieving reliable, fully autonomous driving, particularly the pursuit of Level 5 autonomy. This survey delivers a comprehensive and critical synthesis of the emerging role of GenAI across the autonomous driving stack. We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models (LLMs). We then map their frontier applications in image, LiDAR, trajectory, occupancy, video generation as well as LLM-guided reasoning and decision making. We categorize practical applications, such as synthetic data workflows, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI. We identify key obstacles and possibilities such as comprehensive generalization across rare cases, evaluation and safety checks, budget-limited implementation, regulatory compliance, ethical concerns, and environmental effects, while proposing research plans across theoretical assurances, trust metrics, transport integration, and socio-technical influence. By unifying these threads, the survey provides a forward-looking reference for researchers, engineers, and policymakers navigating the convergence of generative AI and advanced autonomous mobility. An actively maintained repository of cited works is available at https://github.com/taco-group/GenAI4AD.
Abstract:Multimodal Large Language Models (MLLMs) have garnered significant attention recently and demonstrate outstanding capabilities in various tasks such as OCR, VQA, captioning, $\textit{etc}$. However, hallucination remains a persistent issue. While numerous methods have been proposed to mitigate hallucinations, achieving notable improvements, these methods primarily focus on mitigating hallucinations about $\textbf{object/noun-related}$ concepts. Verb concepts, crucial for understanding human actions, have been largely overlooked. In this paper, to the best of our knowledge, we are the $\textbf{first}$ to investigate the $\textbf{verb hallucination}$ phenomenon of MLLMs from various perspectives. Our findings reveal that most state-of-the-art MLLMs suffer from severe verb hallucination. To assess the effectiveness of existing mitigation methods for object concept hallucination on verb hallucination, we evaluated these methods and found that they do not effectively address verb hallucination. To address this issue, we propose a novel rich verb knowledge-based tuning method to mitigate verb hallucination. The experiment results demonstrate that our method significantly reduces hallucinations related to verbs. $\textit{Our code and data will be made publicly available}$.
Abstract:This study presents a novel evaluation framework for the Vision-Language Navigation (VLN) task. It aims to diagnose current models for various instruction categories at a finer-grained level. The framework is structured around the context-free grammar (CFG) of the task. The CFG serves as the basis for the problem decomposition and the core premise of the instruction categories design. We propose a semi-automatic method for CFG construction with the help of Large-Language Models (LLMs). Then, we induct and generate data spanning five principal instruction categories (i.e. direction change, landmark recognition, region recognition, vertical movement, and numerical comprehension). Our analysis of different models reveals notable performance discrepancies and recurrent issues. The stagnation of numerical comprehension, heavy selective biases over directional concepts, and other interesting findings contribute to the development of future language-guided navigation systems.
Abstract:Novel view synthesis of indoor scenes can be achieved by capturing a monocular video sequence of the environment. However, redundant information caused by artificial movements in the input video data reduces the efficiency of scene modeling. In this work, we tackle this challenge from the perspective of camera selection. We begin by constructing a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images. Based on this matrix, we use the Intra-List Diversity (ILD) metric to assess camera redundancy, formulating the camera selection task as an optimization problem. Then we apply a diversity-based sampling algorithm to optimize the camera selection. We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments, closely mimicking real-world scenarios. Experimental results demonstrate that our strategy outperforms other approaches under time and memory constraints. Remarkably, our method achieves performance comparable to models trained on the full dataset, while using only an average of 15% of the frames and 75% of the allotted time.
Abstract:Sound Event Detection (SED) plays a vital role in comprehending and perceiving acoustic scenes. Previous methods have demonstrated impressive capabilities. However, they are deficient in learning features of complex scenes from heterogeneous dataset. In this paper, we introduce a novel dual-branch architecture named Mutual-Assistance Tuning and Dual-Branch Aggregating for Heterogeneous Sound Event Detection (MTDA-HSED). The MTDA-HSED architecture employs the Mutual-Assistance Audio Adapter (M3A) to effectively tackle the multi-scenario problem and uses the Dual-Branch Mid-Fusion (DBMF) module to tackle the multi-granularity problem. Specifically, M3A is integrated into the BEATs block as an adapter to improve the BEATs' performance by fine-tuning it on the multi-scenario dataset. The DBMF module connects BEATs and CNN branches, which facilitates the deep fusion of information from the BEATs and the CNN branches. Experimental results show that the proposed methods exceed the baseline of mpAUC by \textbf{$5\%$} on the DESED and MAESTRO Real datasets. Code is available at https://github.com/Visitor-W/MTDA.
Abstract:In the Sound Event Localization and Detection (SELD) task, Transformer-based models have demonstrated impressive capabilities. However, the quadratic complexity of the Transformer's self-attention mechanism results in computational inefficiencies. In this paper, we propose a network architecture for SELD called SELD-Mamba, which utilizes Mamba, a selective state-space model. We adopt the Event-Independent Network V2 (EINV2) as the foundational framework and replace its Conformer blocks with bidirectional Mamba blocks to capture a broader range of contextual information while maintaining computational efficiency. Additionally, we implement a two-stage training method, with the first stage focusing on Sound Event Detection (SED) and Direction of Arrival (DoA) estimation losses, and the second stage reintroducing the Source Distance Estimation (SDE) loss. Our experimental results on the 2024 DCASE Challenge Task3 dataset demonstrate the effectiveness of the selective state-space model in SELD and highlight the benefits of the two-stage training approach in enhancing SELD performance.
Abstract:This paper introduces an innovative deep learning-based method for end-to-end target radial length estimation from HRRP (High Resolution Range Profile) sequences. Firstly, the HRRP sequences are normalized and transformed into GAF (Gram Angular Field) images to effectively capture and utilize the temporal information. Subsequently, these GAF images serve as the input for a pretrained ResNet-101 model, which is then fine-tuned for target radial length estimation. The simulation results show that compared to traditional threshold method and simple networks e.g. one-dimensional CNN (Convolutional Neural Network), the proposed method demonstrates superior noise resistance and higher accuracy under low SNR (Signal-to-Noise Ratio) conditions.
Abstract:High Resolution Range Profiles (HRRP) have become a key area of focus in the domain of Radar Automatic Target Recognition (RATR). Despite the success of data-driven neural network-based HRRP recognition, challenges such as insufficient training samples persist in its real-world application. This letter introduces HRRPGraphNet, a novel Graph Neural Network (GNN) model designed specifically for HRRP target recognition that leverages new insights to address these challenges. A pivotal innovation is the transformation of HRRP data into a graph structure, utilizing a range cell amplitude-based node vector and a range-relative adjacency matrix. This graph-based approach facilitates both local feature extraction via one-dimensional convolution layers and global feature extraction through a graph convolution layer, capitalizing on the intrinsic relationships between range cells which is a distinct advantage over existing sequence-based methods. Experiments on the aircraft electromagnetic simulation dataset and the measured dataset have confirmed HRRPGraphNet's superior accuracy and robustness, particularly in fewer training sample environments, underscoring the potential of graph-driven innovations in HRRP-based RATR.
Abstract:Information diffusion across various new media platforms gradually influences perceptions, decisions, and social behaviors of individual users. In communication studies, the famous Five W's of Communication model (5W Model) has displayed the process of information diffusion clearly. At present, although plenty of studies and corresponding datasets about information diffusion have emerged, a systematic categorization of tasks and an integration of datasets are still lacking. To address this gap, we survey a systematic taxonomy of information diffusion tasks and datasets based on the "5W Model" framework. We first categorize the information diffusion tasks into ten subtasks with definitions and datasets analysis, from three main tasks of information diffusion prediction, social bot detection, and misinformation detection. We also collect the publicly available dataset repository of information diffusion tasks with the available links and compare them based on six attributes affiliated to users and content: user information, social network, bot label, propagation content, propagation network, and veracity label. In addition, we discuss the limitations and future directions of current datasets and research topics to advance the future development of information diffusion. The dataset repository can be accessed at our website https://github.com/fuxiaG/Information-Diffusion-Datasets.