Abstract:Brain-inspired neuromorphic computing with spiking neural networks (SNNs) is a promising energy-efficient computational approach. However, successfully training SNNs in a more biologically plausible and neuromorphic-hardware-friendly way is still challenging. Most recent methods leverage spatial and temporal backpropagation (BP), not adhering to neuromorphic properties. Despite the efforts of some online training methods, tackling spatial credit assignments by alternatives with comparable performance as spatial BP remains a significant problem. In this work, we propose a novel method, online pseudo-zeroth-order (OPZO) training. Our method only requires a single forward propagation with noise injection and direct top-down signals for spatial credit assignment, avoiding spatial BP's problem of symmetric weights and separate phases for layer-by-layer forward-backward propagation. OPZO solves the large variance problem of zeroth-order methods by the pseudo-zeroth-order formulation and momentum feedback connections, while having more guarantees than random feedback. Combining online training, OPZO can pave paths to on-chip SNN training. Experiments on neuromorphic and static datasets with fully connected and convolutional networks demonstrate the effectiveness of OPZO with similar performance compared with spatial BP, as well as estimated low training costs.
Abstract:Foundation Models (FMs) have demonstrated remarkable insights into the relational dynamics of the world, leading to the crucial question: how do these models acquire an understanding of world hybrid relations? Traditional statistical learning, particularly for prediction problems, may overlook the rich and inherently structured information from the data, especially regarding the relationships between objects. We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of FMs. In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style. By integrating rich graph theories into the realm of PTMs, our mathematical framework offers powerful tools for an in-depth understanding of pre-training from a unique perspective and can be used under various scenarios. As an example, we extend the framework to entity alignment in multimodal learning.
Abstract:Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation, distinguished by their computational capability and energy efficiency due to precise spiking times and sparse spikes with event-driven computation. A significant question is how SNNs can emulate human-like graph-based reasoning of concepts and relations, especially leveraging the temporal domain optimally. This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning. It is elucidated that spiking time can function as an additional dimension to encode relation properties via a neural-generalized path formulation. Empirical results highlight the efficacy of temporal delay in relation processing and showcase exemplary performance in diverse graph reasoning tasks. The spiking model is theoretically estimated to achieve $20\times$ energy savings compared to non-spiking counterparts, deepening insights into the capabilities and potential of biologically inspired SNNs for efficient reasoning. The code is available at https://github.com/pkuxmq/GRSNN.
Abstract:Causality has been combined with machine learning to produce robust representations for domain generalization. Most existing methods of this type require massive data from multiple domains to identify causal features by cross-domain variations, which can be expensive or even infeasible and may lead to misidentification in some cases. In this work, we make a different attempt by leveraging the demonstration data distribution to discover the causal features for a domain generalizable policy. We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution via causal discovery. Our framework can achieve domain generalizable imitation learning with only single-domain data and serve as a complement for cross-domain variation-based methods under non-structural assumptions on the underlying causal models. Our empirical study in various control tasks shows that the proposed framework evidently improves the domain generalization performance and has comparable performance to the expert in the original domain simultaneously.
Abstract:Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.
Abstract:Although adaptive gradient methods have been extensively used in deep learning, their convergence rates have not been thoroughly studied, particularly with respect to their dependence on the dimension. This paper considers the classical RMSProp and its momentum extension and establishes the convergence rate of $\frac{1}{T}\sum_{k=1}^TE\left[\|\nabla f(x^k)\|_1\right]\leq O(\frac{\sqrt{d}}{T^{1/4}})$ measured by $\ell_1$ norm without the bounded gradient assumption, where $d$ is the dimension of the optimization variable and $T$ is the iteration number. Since $\|x\|_2\ll\|x\|_1\leq\sqrt{d}\|x\|_2$ for problems with extremely large $d$, our convergence rate can be considered to be analogous to the $\frac{1}{T}\sum_{k=1}^TE\left[\|\nabla f(x^k)\|_2\right]\leq O(\frac{1}{T^{1/4}})$ one of SGD measured by $\ell_1$ norm.
Abstract:Adversarial Training (AT) has become arguably the state-of-the-art algorithm for extracting robust features. However, researchers recently notice that AT suffers from severe robust overfitting problems, particularly after learning rate (LR) decay. In this paper, we explain this phenomenon by viewing adversarial training as a dynamic minimax game between the model trainer and the attacker. Specifically, we analyze how LR decay breaks the balance between the minimax game by empowering the trainer with a stronger memorization ability, and show such imbalance induces robust overfitting as a result of memorizing non-robust features. We validate this understanding with extensive experiments, and provide a holistic view of robust overfitting from the dynamics of both the two game players. This understanding further inspires us to alleviate robust overfitting by rebalancing the two players by either regularizing the trainer's capacity or improving the attack strength. Experiments show that the proposed ReBalanced Adversarial Training (ReBAT) can attain good robustness and does not suffer from robust overfitting even after very long training. Code is available at https://github.com/PKU-ML/ReBAT.
Abstract:The continuous evolution of pre-trained large language models with ever-growing parameters and corpus sizes has augmented their capacity to solve complex tasks. This ability, which obviates the necessity for task-specific training or fine-tuning, relies on providing the model with a language description or some task exemplars -- referred to the prompt -- that guide the desired autoregressive generation. Despite the remarkable success, the underlying mechanisms that facilitate such exceptional generalization abilities remain an open question. In this paper, we present a novel framework that formally conceptualizes answer generation for complex natural language tasks as a hierarchical ``template-content'' structure. According to our modeling, there exist pre-trained models that can automatically decompose tasks into constituent steps during autoregressive generation, through language modeling on a sufficiently large corpus, thereby solving them. Our framework offers an explanatory tool for the complex reasoning abilities of large language models from the perspective of modeling autoregressive generation tasks. Our experiments show that practical models exhibit different behaviors for ``template'' and ``content'' providing support for our modeling.
Abstract:With distributed machine learning being a prominent technique for large-scale machine learning tasks, communication complexity has become a major bottleneck for speeding up training and scaling up machine numbers. In this paper, we propose a new technique named Common randOm REconstruction(CORE), which can be used to compress the information transmitted between machines in order to reduce communication complexity without other strict conditions. Especially, our technique CORE projects the vector-valued information to a low-dimensional one through common random vectors and reconstructs the information with the same random noises after communication. We apply CORE to two distributed tasks, respectively convex optimization on linear models and generic non-convex optimization, and design new distributed algorithms, which achieve provably lower communication complexities. For example, we show for linear models CORE-based algorithm can encode the gradient vector to $\mathcal{O}(1)$-bits (against $\mathcal{O}(d)$), with the convergence rate not worse, preceding the existing results.
Abstract:Understanding the dynamics of large quantum systems is hindered by the curse of dimensionality. Statistical learning offers new possibilities in this regime by neural-network protocols and classical shadows, while both methods have limitations: the former is plagued by the predictive uncertainty and the latter lacks the generalization ability. Here we propose a data-centric learning paradigm combining the strength of these two approaches to facilitate diverse quantum system learning (QSL) tasks. Particularly, our paradigm utilizes classical shadows along with other easily obtainable information of quantum systems to create the training dataset, which is then learnt by neural networks to unveil the underlying mapping rule of the explored QSL problem. Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems at the inference stage, even with few state copies. Besides, it inherits the characteristic of classical shadows, enabling memory-efficient storage and faithful prediction. These features underscore the immense potential of the proposed data-centric approach in discovering novel and large-scale quantum systems. For concreteness, we present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits. Our work showcases the profound prospects of data-centric artificial intelligence to advance QSL in a faithful and generalizable manner.