Abstract:Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.
Abstract:The diffusion probabilistic generative models are widely used to generate high-quality data. Though they can synthetic data that does not exist in the training set, the rationale behind such generalization is still unexplored. In this paper, we formally define the generalization of the generative model, which is measured by the mutual information between the generated data and the training set. The definition originates from the intuition that the model which generates data with less correlation to the training set exhibits better generalization ability. Meanwhile, we show that for the empirical optimal diffusion model, the data generated by a deterministic sampler are all highly related to the training set, thus poor generalization. This result contradicts the observation of the trained diffusion model's (approximating empirical optima) extrapolation ability (generating unseen data). To understand this contradiction, we empirically verify the difference between the sufficiently trained diffusion model and the empirical optima. We found, though obtained through sufficient training, there still exists a slight difference between them, which is critical to making the diffusion model generalizable. Moreover, we propose another training objective whose empirical optimal solution has no potential generalization problem. We empirically show that the proposed training objective returns a similar model to the original one, which further verifies the generalization ability of the trained diffusion model.
Abstract:Neural Radiance Fields (NeRF) has demonstrated remarkable 3D reconstruction capabilities with dense view images. However, its performance significantly deteriorates under sparse view settings. We observe that learning the 3D consistency of pixels among different views is crucial for improving reconstruction quality in such cases. In this paper, we propose ConsistentNeRF, a method that leverages depth information to regularize both multi-view and single-view 3D consistency among pixels. Specifically, ConsistentNeRF employs depth-derived geometry information and a depth-invariant loss to concentrate on pixels that exhibit 3D correspondence and maintain consistent depth relationships. Extensive experiments on recent representative works reveal that our approach can considerably enhance model performance in sparse view conditions, achieving improvements of up to 94% in PSNR, 76% in SSIM, and 31% in LPIPS compared to the vanilla baselines across various benchmarks, including DTU, NeRF Synthetic, and LLFF.
Abstract:The text-driven image and video diffusion models have achieved unprecedented success in generating realistic and diverse content. Recently, the editing and variation of existing images and videos in diffusion-based generative models have garnered significant attention. However, previous works are limited to editing content with text or providing coarse personalization using a single visual clue, rendering them unsuitable for indescribable content that requires fine-grained and detailed control. In this regard, we propose a generic video editing framework called Make-A-Protagonist, which utilizes textual and visual clues to edit videos with the goal of empowering individuals to become the protagonists. Specifically, we leverage multiple experts to parse source video, target visual and textual clues, and propose a visual-textual-based video generation model that employs mask-guided denoising sampling to generate the desired output. Extensive results demonstrate the versatile and remarkable editing capabilities of Make-A-Protagonist.
Abstract:Large vision and language models, such as Contrastive Language-Image Pre-training (CLIP), are rapidly becoming the industry norm for matching images and texts. In order to improve its zero-shot recognition performance, current research either adds additional web-crawled image-text pairs or designs new training losses. However, the additional costs associated with training from scratch and data collection substantially hinder their deployment. In this paper, we present HELIP, a low-cost strategy for boosting the performance of well-trained CLIP models by finetuning them with hard samples over original training data. Mixing hard examples into each batch, the well-trained CLIP model is then fine-tuned using the conventional contrastive alignment objective and a margin loss to distinguish between normal and hard negative data. HELIP is deployed in a plug-and-play fashion to existing models. On a comprehensive zero-shot and retrieval benchmark, without training the model from scratch or utilizing additional data, HELIP consistently boosts existing models to achieve leading performance. In particular, HELIP boosts ImageNet zero-shot accuracy of SLIP by 3.05 and 4.47 when pretrained on CC3M and CC12M respectively. In addition, a systematic evaluation of zero-shot and linear probing experiments across fine-grained classification datasets demonstrates a consistent performance improvement and validates the efficacy of HELIP . When pretraining on CC3M, HELIP boosts zero-shot performance of CLIP and SLIP by 8.4\% and 18.6\% on average respectively, and linear probe performance by 9.5\% and 3.0\% on average respectively.
Abstract:The performance of Large Language Models (LLMs) in reasoning tasks depends heavily on prompt design, with Chain-of-Thought (CoT) and self-consistency being critical methods that enhance this ability. However, these methods do not fully exploit the answers generated by the LLM to guide subsequent responses. This paper proposes a new prompting method, named Progressive-Hint Prompting (PHP), that enables automatic multiple interactions between users and LLMs by using previously generated answers as hints to progressively guide toward the correct answers. PHP is orthogonal to CoT and self-consistency, making it easy to combine with state-of-the-art techniques to further improve performance. We conducted an extensive and comprehensive evaluation to demonstrate the effectiveness of the proposed method. Our experimental results on six benchmarks show that combining CoT and self-consistency with PHP significantly improves accuracy while remaining highly efficient. For instance, with text-davinci-003, we observed a 4.2% improvement on GSM8K with greedy decoding compared to Complex CoT, and a 46.17% reduction in sample paths with self-consistency. With GPT-4 and PHP, we achieve state-of-the-art performances on SVAMP (89.1% -> 91.9%), GSM8K (92% -> 95.5%), AQuA (76.4% -> 79.9%) and MATH (50.2% -> 53.9%).
Abstract:Diffusion models have proven to be highly effective in generating high-quality images. However, adapting large pre-trained diffusion models to new domains remains an open challenge, which is critical for real-world applications. This paper proposes DiffFit, a parameter-efficient strategy to fine-tune large pre-trained diffusion models that enable fast adaptation to new domains. DiffFit is embarrassingly simple that only fine-tunes the bias term and newly-added scaling factors in specific layers, yet resulting in significant training speed-up and reduced model storage costs. Compared with full fine-tuning, DiffFit achieves 2$\times$ training speed-up and only needs to store approximately 0.12\% of the total model parameters. Intuitive theoretical analysis has been provided to justify the efficacy of scaling factors on fast adaptation. On 8 downstream datasets, DiffFit achieves superior or competitive performances compared to the full fine-tuning while being more efficient. Remarkably, we show that DiffFit can adapt a pre-trained low-resolution generative model to a high-resolution one by adding minimal cost. Among diffusion-based methods, DiffFit sets a new state-of-the-art FID of 3.02 on ImageNet 512$\times$512 benchmark by fine-tuning only 25 epochs from a public pre-trained ImageNet 256$\times$256 checkpoint while being 30$\times$ more training efficient than the closest competitor.
Abstract:Perception systems in modern autonomous driving vehicles typically take inputs from complementary multi-modal sensors, e.g., LiDAR and cameras. However, in real-world applications, sensor corruptions and failures lead to inferior performances, thus compromising autonomous safety. In this paper, we propose a robust framework, called MetaBEV, to address extreme real-world environments involving overall six sensor corruptions and two extreme sensor-missing situations. In MetaBEV, signals from multiple sensors are first processed by modal-specific encoders. Subsequently, a set of dense BEV queries are initialized, termed meta-BEV. These queries are then processed iteratively by a BEV-Evolving decoder, which selectively aggregates deep features from either LiDAR, cameras, or both modalities. The updated BEV representations are further leveraged for multiple 3D prediction tasks. Additionally, we introduce a new M2oE structure to alleviate the performance drop on distinct tasks in multi-task joint learning. Finally, MetaBEV is evaluated on the nuScenes dataset with 3D object detection and BEV map segmentation tasks. Experiments show MetaBEV outperforms prior arts by a large margin on both full and corrupted modalities. For instance, when the LiDAR signal is missing, MetaBEV improves 35.5% detection NDS and 17.7% segmentation mIoU upon the vanilla BEVFusion model; and when the camera signal is absent, MetaBEV still achieves 69.2% NDS and 53.7% mIoU, which is even higher than previous works that perform on full-modalities. Moreover, MetaBEV performs fairly against previous methods in both canonical perception and multi-task learning settings, refreshing state-of-the-art nuScenes BEV map segmentation with 70.4% mIoU.
Abstract:Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset contains 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, based on the proposed dataset, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.
Abstract:This paper presents DetCLIPv2, an efficient and scalable training framework that incorporates large-scale image-text pairs to achieve open-vocabulary object detection (OVD). Unlike previous OVD frameworks that typically rely on a pre-trained vision-language model (e.g., CLIP) or exploit image-text pairs via a pseudo labeling process, DetCLIPv2 directly learns the fine-grained word-region alignment from massive image-text pairs in an end-to-end manner. To accomplish this, we employ a maximum word-region similarity between region proposals and textual words to guide the contrastive objective. To enable the model to gain localization capability while learning broad concepts, DetCLIPv2 is trained with a hybrid supervision from detection, grounding and image-text pair data under a unified data formulation. By jointly training with an alternating scheme and adopting low-resolution input for image-text pairs, DetCLIPv2 exploits image-text pair data efficiently and effectively: DetCLIPv2 utilizes 13X more image-text pairs than DetCLIP with a similar training time and improves performance. With 13M image-text pairs for pre-training, DetCLIPv2 demonstrates superior open-vocabulary detection performance, e.g., DetCLIPv2 with Swin-T backbone achieves 40.4% zero-shot AP on the LVIS benchmark, which outperforms previous works GLIP/GLIPv2/DetCLIP by 14.4/11.4/4.5% AP, respectively, and even beats its fully-supervised counterpart by a large margin.