Abstract:Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)
Abstract:In current visual model training, models often rely on only limited sufficient causes for their predictions, which makes them sensitive to distribution shifts or the absence of key features. Attribution methods can accurately identify a model's critical regions. However, masking these areas to create counterfactuals often causes the model to misclassify the target, while humans can still easily recognize it. This divergence highlights that the model's learned dependencies may not be sufficiently causal. To address this issue, we propose Subset-Selected Counterfactual Augmentation (SS-CA), which integrates counterfactual explanations directly into the training process for targeted intervention. Building on the subset-selection-based LIMA attribution method, we develop Counterfactual LIMA to identify minimal spatial region sets whose removal can selectively alter model predictions. Leveraging these attributions, we introduce a data augmentation strategy that replaces the identified regions with natural background, and we train the model jointly on both augmented and original samples to mitigate incomplete causal learning. Extensive experiments across multiple ImageNet variants show that SS-CA improves generalization on in-distribution (ID) test data and achieves superior performance on out-of-distribution (OOD) benchmarks such as ImageNet-R and ImageNet-S. Under perturbations including noise, models trained with SS-CA also exhibit enhanced generalization, demonstrating that our approach effectively uses interpretability insights to correct model deficiencies and improve both performance and robustness.
Abstract:Multimodal Large Language Models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet their internal decision-making mechanisms remain insufficiently understood. Existing interpretability research has primarily focused on cross-modal attribution, identifying which image regions the model attends to during output generation. However, these approaches often overlook intra-modal dependencies. In the visual modality, attributing importance to isolated image patches ignores spatial context due to limited receptive fields, resulting in fragmented and noisy explanations. In the textual modality, reliance on preceding tokens introduces spurious activations. Failing to effectively mitigate these interference compromises attribution fidelity. To address these limitations, we propose enhancing interpretability by leveraging intra-modal interaction. For the visual branch, we introduce \textit{Multi-Scale Explanation Aggregation} (MSEA), which aggregates attributions over multi-scale inputs to dynamically adjust receptive fields, producing more holistic and spatially coherent visual explanations. For the textual branch, we propose \textit{Activation Ranking Correlation} (ARC), which measures the relevance of contextual tokens to the current token via alignment of their top-$k$ prediction rankings. ARC leverages this relevance to suppress spurious activations from irrelevant contexts while preserving semantically coherent ones. Extensive experiments across state-of-the-art MLLMs and benchmark datasets demonstrate that our approach consistently outperforms existing interpretability methods, yielding more faithful and fine-grained explanations of model behavior.
Abstract:Web navigation represents a critical and challenging domain for evaluating artificial general intelligence (AGI), demanding complex decision-making within high-entropy, dynamic environments with combinatorially explosive action spaces. Current approaches to building autonomous web agents either focus on offline imitation learning or online exploration, but rarely integrate both paradigms effectively. Inspired by the dual-process theory of human cognition, we derive a principled decomposition into fast System 1 and slow System 2 cognitive processes. This decomposition provides a unifying perspective on existing web agent methodologies, bridging the gap between offline learning of intuitive reactive behaviors and online acquisition of deliberative planning capabilities. We implement this framework in CogniWeb, a modular agent architecture that adaptively toggles between fast intuitive processing and deliberate reasoning based on task complexity. Our evaluation on WebArena demonstrates that CogniWeb achieves competitive performance (43.96% success rate) while maintaining significantly higher efficiency (75% reduction in token usage).
Abstract:Large Language Models (LLMs) have shown impressive performance in reasoning tasks. However, LLMs tend to generate excessively long reasoning content, leading to significant computational overhead. Our observations indicate that even on simple problems, LLMs tend to produce unnecessarily lengthy reasoning content, which is against intuitive expectations. Preliminary experiments show that at a certain point during the generation process, the model is already capable of producing the correct solution without completing the full reasoning content. Therefore, we consider that the reasoning process of the model can be exited early to achieve the purpose of efficient reasoning. We introduce a verification model that identifies the exact moment when the model can stop reasoning and still provide the correct answer. Comprehensive experiments on four different benchmarks demonstrate that our proposed method, FlashThink, effectively shortens the reasoning content while preserving the model accuracy. For the Deepseek-R1 and QwQ-32B models, we reduced the length of reasoning content by 77.04% and 77.47%, respectively, without reducing the accuracy.
Abstract:Individuals with upper limb movement limitations face challenges in interacting with others. Although robotic arms are currently used primarily for functional tasks, there is considerable potential to explore ways to enhance users' body language capabilities during social interactions. This paper introduces an Augmented Body Communicator system that integrates robotic arms and a large language model. Through the incorporation of kinetic memory, disabled users and their supporters can collaboratively design actions for the robot arm. The LLM system then provides suggestions on the most suitable action based on contextual cues during interactions. The system underwent thorough user testing with six participants who have conditions affecting upper limb mobility. Results indicate that the system improves users' ability to express themselves. Based on our findings, we offer recommendations for developing robotic arms that support disabled individuals with body language capabilities and functional tasks.




Abstract:Self-reflection for Large Language Models (LLMs) has gained significant attention. Existing approaches involve models iterating and improving their previous responses based on LLMs' internal reflection ability or external feedback. However, recent research has raised doubts about whether intrinsic self-correction without external feedback may even degrade performance. Based on our empirical evidence, we find that current static reflection methods may lead to redundant, drift, and stubborn issues. To mitigate this, we introduce Instruct-of-Reflection (IoRT), a novel and general reflection framework that leverages dynamic-meta instruction to enhance the iterative reflection capability of LLMs. Specifically, we propose the instructor driven by the meta-thoughts and self-consistency classifier, generates various instructions, including refresh, stop, and select, to guide the next reflection iteration. Our experiments demonstrate that IoRT achieves an average improvement of 10.1% over established baselines in mathematical and commonsense reasoning tasks, highlighting its efficacy and applicability.




Abstract:Trajectory User Linking (TUL), which links anonymous trajectories with users who generate them, plays a crucial role in modeling human mobility. Despite significant advancements in this field, existing studies primarily neglect the high-order inter-trajectory relationships, which represent complex associations among multiple trajectories, manifested through multi-location co-occurrence patterns emerging when trajectories intersect at various Points of Interest (POIs). Furthermore, they also overlook the variable influence of POIs on different trajectories, as well as the user class imbalance problem caused by disparities in user activity levels and check-in frequencies. To address these limitations, we propose a novel HyperGraph-based multi-perspective Trajectory User Linking model (HGTUL). Our model learns trajectory representations from both relational and spatio-temporal perspectives: (1) it captures high-order associations among trajectories by constructing a trajectory hypergraph and leverages a hypergraph attention network to learn the variable impact of POIs on trajectories; (2) it models the spatio-temporal characteristics of trajectories by incorporating their temporal and spatial information into a sequential encoder. Moreover, we design a data balancing method to effectively address the user class imbalance problem and experimentally validate its significance in TUL. Extensive experiments on three real-world datasets demonstrate that HGTUL outperforms state-of-the-art baselines, achieving improvements of 2.57%~20.09% and 5.68%~26.00% in ACC@1 and Macro-F1 metrics, respectively.




Abstract:In recent years, knowledge graphs have been integrated into recommender systems as item-side auxiliary information, enhancing recommendation accuracy. However, constructing and integrating structural user-side knowledge remains a significant challenge due to the improper granularity and inherent scarcity of user-side features. Recent advancements in Large Language Models (LLMs) offer the potential to bridge this gap by leveraging their human behavior understanding and extensive real-world knowledge. Nevertheless, integrating LLM-generated information into recommender systems presents challenges, including the risk of noisy information and the need for additional knowledge transfer. In this paper, we propose an LLM-based user-side knowledge inference method alongside a carefully designed recommendation framework to address these challenges. Our approach employs LLMs to infer user interests based on historical behaviors, integrating this user-side information with item-side and collaborative data to construct a hybrid structure: the Collaborative Interest Knowledge Graph (CIKG). Furthermore, we propose a CIKG-based recommendation framework that includes a user interest reconstruction module and a cross-domain contrastive learning module to mitigate potential noise and facilitate knowledge transfer. We conduct extensive experiments on three real-world datasets to validate the effectiveness of our method. Our approach achieves state-of-the-art performance compared to competitive baselines, particularly for users with sparse interactions.
Abstract:Pre-trained Vision-Language (VL) models such as CLIP have demonstrated their excellent performance across numerous downstream tasks. A recent method, Context Optimization (CoOp), further improves the performance of VL models on downstream tasks by introducing prompt learning. CoOp optimizes a set of learnable vectors, aka prompt, and freezes the whole CLIP model. However, relying solely on CLIP loss to fine-tune prompts can lead to models that are prone to overfitting on downstream task. To address this issue, we propose a plug-in prompt-regularization method called PLPP (Prompt Learning with PerPlexity), which use perplexity loss to regularize prompt learning. PLPP designs a two-step operation to compute the perplexity for prompts: (a) calculating cosine similarity between the weight of the embedding layer and prompts to get labels, (b) introducing a language model (LM) head that requires no training behind text encoder to output word probability distribution. Meanwhile, we unveil that the essence of PLPP is inherently a form of self-distillation. To further prevent overfitting as well as to reduce the additional computation introduced by PLPP, we turn the hard label to soft label and choose top-$k$ values for calculating the perplexity loss. For accelerating model convergence, we introduce mutual self-distillation learning, that is perplexity and inverted perplexity loss. The experiments conducted on four classification tasks indicate that PLPP exhibits superior performance compared to existing methods.