Abstract:While dense retrieval models have achieved remarkable success, rigorous evaluation of their sensitivity to the position of relevant information (i.e., position bias) remains largely unexplored. Existing benchmarks typically employ position-agnostic relevance labels, conflating the challenge of processing long contexts with the bias against specific evidence locations. To address this challenge, we introduce PosIR (Position-Aware Information Retrieval), a comprehensive benchmark designed to diagnose position bias in diverse retrieval scenarios. PosIR comprises 310 datasets spanning 10 languages and 31 domains, constructed through a rigorous pipeline that ties relevance to precise reference spans, enabling the strict disentanglement of document length from information position. Extensive experiments with 10 state-of-the-art embedding models reveal that: (1) Performance on PosIR in long-context settings correlates poorly with the MMTEB benchmark, exposing limitations in current short-text benchmarks; (2) Position bias is pervasive and intensifies with document length, with most models exhibiting primacy bias while certain models show unexpected recency bias; (3) Gradient-based saliency analysis further uncovers the distinct internal attention mechanisms driving these positional preferences. In summary, PosIR serves as a valuable diagnostic framework to foster the development of position-robust retrieval systems.
Abstract:Large language models (LLMs) exhibit exceptional performance but pose inherent risks of generating toxic content, restricting their safe deployment. While traditional methods (e.g., alignment) adjust output preferences, they fail to eliminate underlying toxic regions in parameters, leaving models vulnerable to adversarial attacks. Prior mechanistic studies characterize toxic regions as "toxic vectors" or "layer-wise subspaces", yet our analysis identifies critical limitations: i) Removed toxic vectors can be reconstructed via linear combinations of non-toxic vectors, demanding targeting of entire toxic subspace; ii) Contrastive objective over limited samples inject noise into layer-wise subspaces, hindering stable extraction. These highlight the challenge of identifying robust toxic subspace and removing them. Therefore, we propose GLOSS (GLobal tOxic Subspace Suppression), a lightweight method that mitigates toxicity by identifying and eliminating this global subspace from FFN parameters. Experiments on LLMs (e.g., Qwen3) show GLOSS achieves SOTA detoxification while preserving general capabilities without requiring large-scale retraining. WARNING: This paper contains context which is toxic in nature.
Abstract:Recently, people have suffered and become increasingly aware of the unreliability gap in LLMs for open and knowledge-intensive tasks, and thus turn to search-augmented LLMs to mitigate this issue. However, when the search engine is triggered for harmful tasks, the outcome is no longer under the LLM's control. Once the returned content directly contains targeted, ready-to-use harmful takeaways, the LLM's safeguards cannot withdraw that exposure. Motivated by this dilemma, we identify web search as a critical attack surface and propose \textbf{\textit{SearchAttack}} for red-teaming. SearchAttack outsources the harmful semantics to web search, retaining only the query's skeleton and fragmented clues, and further steers LLMs to reconstruct the retrieved content via structural rubrics to achieve malicious goals. Extensive experiments are conducted to red-team the search-augmented LLMs for responsible vulnerability assessment. Empirically, SearchAttack demonstrates strong effectiveness in attacking these systems.
Abstract:Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)
Abstract:In robots task and motion planning (TAMP), it is crucial to sample within the robot's configuration space to meet task-level global constraints and enhance the efficiency of subsequent motion planning. Due to the complexity of joint configuration sampling under multi-level constraints, traditional methods often lack efficiency. This paper introduces the principle of RobKiNet, a kinematics-informed neural network, for end-to-end sampling within the Continuous Feasible Set (CFS) under multiple constraints in configuration space, establishing its Optimization Expectation Model. Comparisons with traditional sampling and learning-based approaches reveal that RobKiNet's kinematic knowledge infusion enhances training efficiency by ensuring stable and accurate gradient optimization.Visualizations and quantitative analyses in a 2-DOF space validate its theoretical efficiency, while its application on a 9-DOF autonomous mobile manipulator robot(AMMR) demonstrates superior whole-body and decoupled control, excelling in battery disassembly tasks. RobKiNet outperforms deep reinforcement learning with a training speed 74.29 times faster and a sampling accuracy of up to 99.25%, achieving a 97.33% task completion rate in real-world scenarios.
Abstract:Existing machine learning methods for molecular (e.g., gene) embeddings are restricted to specific tasks or data modalities, limiting their effectiveness within narrow domains. As a result, they fail to capture the full breadth of gene functions and interactions across diverse biological contexts. In this study, we have systematically evaluated knowledge representations of biomolecules across multiple dimensions representing a task-agnostic manner spanning three major data sources, including omics experimental data, literature-derived text data, and knowledge graph-based representations. To distinguish between meaningful biological signals from chance correlations, we devised an adjusted variant of Singular Vector Canonical Correlation Analysis (SVCCA) that quantifies signal redundancy and complementarity across different data modalities and sources. These analyses reveal that existing embeddings capture largely non-overlapping molecular signals, highlighting the value of embedding integration. Building on this insight, we propose Platform for Representation and Integration of multimodal Molecular Embeddings (PRISME), a machine learning based workflow using an autoencoder to integrate these heterogeneous embeddings into a unified multimodal representation. We validated this approach across various benchmark tasks, where PRISME demonstrated consistent performance, and outperformed individual embedding methods in missing value imputations. This new framework supports comprehensive modeling of biomolecules, advancing the development of robust, broadly applicable multimodal embeddings optimized for downstream biomedical machine learning applications.
Abstract:To construct responsible and secure AI applications, harmful information data is widely utilized for adversarial testing and the development of safeguards. Existing studies mainly leverage Large Language Models (LLMs) to synthesize data to obtain high-quality task datasets at scale, thereby avoiding costly human annotation. However, limited by the safety alignment mechanisms of LLMs, the synthesis of harmful data still faces challenges in generation reliability and content diversity. In this study, we propose a novel harmful information synthesis framework, PoisonSwarm, which applies the model crowdsourcing strategy to generate diverse harmful data while maintaining a high success rate. Specifically, we generate abundant benign data as the based templates in a counterfactual manner. Subsequently, we decompose each based template into multiple semantic units and perform unit-by-unit toxification and final refinement through dynamic model switching, thus ensuring the success of synthesis. Experimental results demonstrate that PoisonSwarm achieves state-of-the-art performance in synthesizing different categories of harmful data with high scalability and diversity.
Abstract:Research on learned cardinality estimation has achieved significant progress in recent years. However, existing methods still face distinct challenges that hinder their practical deployment in production environments. We conceptualize these challenges as the "Trilemma of Cardinality Estimation", where learned cardinality estimation methods struggle to balance generality, accuracy, and updatability. To address these challenges, we introduce DistJoin, a join cardinality estimator based on efficient distribution prediction using multi-autoregressive models. Our contributions are threefold: (1) We propose a method for estimating both equi and non-equi join cardinality by leveraging the conditional probability distributions of individual tables in a decoupled manner. (2) To meet the requirements of efficient training and inference for DistJoin, we develop Adaptive Neural Predicate Modulation (ANPM), a high-throughput conditional probability distribution estimation model. (3) We formally analyze the variance of existing similar methods and demonstrate that such approaches suffer from variance accumulation issues. To mitigate this problem, DistJoin employs a selectivity-based approach rather than a count-based approach to infer join cardinality, effectively reducing variance. In summary, DistJoin not only represents the first data-driven method to effectively support both equi and non-equi joins but also demonstrates superior accuracy while enabling fast and flexible updates. We evaluate DistJoin on JOB-light and JOB-light-ranges, extending the evaluation to non-equi join conditions. The results demonstrate that our approach achieves the highest accuracy, robustness to data updates, generality, and comparable update and inference speed relative to existing methods.




Abstract:Stance detection on social media aims to identify attitudes expressed in tweets towards specific targets. Current studies prioritize Large Language Models (LLMs) over Small Language Models (SLMs) due to the overwhelming performance improving provided by LLMs. However, heavily relying on LLMs for stance detection, regardless of the cost, is impractical for real-world social media monitoring systems that require vast data analysis. To this end, we propose \textbf{\underline{Co}}llaborative Stance Detection via Small-Large Language Model Consistency \textbf{\underline{Ver}}ification (\textbf{CoVer}) framework, which enhances LLM utilization via context-shared batch reasoning and logical verification between LLM and SLM. Specifically, instead of processing each text individually, CoVer processes texts batch-by-batch, obtaining stance predictions and corresponding explanations via LLM reasoning in a shared context. Then, to exclude the bias caused by context noises, CoVer introduces the SLM for logical consistency verification. Finally, texts that repeatedly exhibit low logical consistency are classified using consistency-weighted aggregation of prior LLM stance predictions. Our experiments show that CoVer outperforms state-of-the-art methods across multiple benchmarks in the zero-shot setting, achieving 0.54 LLM queries per tweet while significantly enhancing performance. Our CoVer offers a more practical solution for LLM deploying for social media stance detection.




Abstract:We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.