Abstract:Large-scale video streaming events attract millions of simultaneous viewers, stressing existing delivery infrastructures. Client-driven adaptation reacts slowly to shared congestion, while server-based coordination introduces scalability bottlenecks and single points of failure. We present COMETS, a coordinated multi-destination video transmission framework that leverages information-centric networking principles such as request aggregation and in-network state awareness to enable scalable, fair, and adaptive rate control. COMETS introduces a novel range-interest protocol and distributed in-network decision process that aligns video quality across receiver groups while minimizing redundant transmissions. To achieve this, we develop a lightweight distributed optimization framework that guides per-hop quality adaptation without centralized control. Extensive emulation shows that COMETS consistently improves bandwidth utilization, fairness, and user-perceived quality of experience over DASH, MoQ, and ICN baselines, particularly under high concurrency. The results highlight COMETS as a practical, deployable approach for next-generation scalable video delivery.
Abstract:Capturing fine-grained hand-object interactions is challenging due to severe self-occlusion from closely spaced fingers and the subtlety of in-hand manipulation motions. Existing optical motion capture systems rely on expensive camera setups and extensive manual post-processing, while low-cost vision-based methods often suffer from reduced accuracy and reliability under occlusion. To address these challenges, we present DexterCap, a low-cost optical capture system for dexterous in-hand manipulation. DexterCap uses dense, character-coded marker patches to achieve robust tracking under severe self-occlusion, together with an automated reconstruction pipeline that requires minimal manual effort. With DexterCap, we introduce DexterHand, a dataset of fine-grained hand-object interactions covering diverse manipulation behaviors and objects, from simple primitives to complex articulated objects such as a Rubik's Cube. We release the dataset and code to support future research on dexterous hand-object interaction.
Abstract:Automated interpretation of medical images demands robust modeling of complex visual-semantic relationships while addressing annotation scarcity, label imbalance, and clinical plausibility constraints. We introduce MIRNet (Medical Image Reasoner Network), a novel framework that integrates self-supervised pre-training with constrained graph-based reasoning. Tongue image diagnosis is a particularly challenging domain that requires fine-grained visual and semantic understanding. Our approach leverages self-supervised masked autoencoder (MAE) to learn transferable visual representations from unlabeled data; employs graph attention networks (GAT) to model label correlations through expert-defined structured graphs; enforces clinical priors via constraint-aware optimization using KL divergence and regularization losses; and mitigates imbalance using asymmetric loss (ASL) and boosting ensembles. To address annotation scarcity, we also introduce TongueAtlas-4K, a comprehensive expert-curated benchmark comprising 4,000 images annotated with 22 diagnostic labels--representing the largest public dataset in tongue analysis. Validation shows our method achieves state-of-the-art performance. While optimized for tongue diagnosis, the framework readily generalizes to broader diagnostic medical imaging tasks.
Abstract:Low-rank adaptation (LoRA) has emerged as a leading parameter-efficient fine-tuning technique for adapting large foundation models, yet it often locks adapters into suboptimal minima near their initialization. This hampers model generalization and limits downstream operators such as adapter merging and pruning. Here, we propose CoTo, a progressive training strategy that gradually increases adapters' activation probability over the course of fine-tuning. By stochastically deactivating adapters, CoTo encourages more balanced optimization and broader exploration of the loss landscape. We provide a theoretical analysis showing that CoTo promotes layer-wise dropout stability and linear mode connectivity, and we adopt a cooperative-game approach to quantify each adapter's marginal contribution. Extensive experiments demonstrate that CoTo consistently boosts single-task performance, enhances multi-task merging accuracy, improves pruning robustness, and reduces training overhead, all while remaining compatible with diverse LoRA variants. Code is available at https://github.com/zwebzone/coto.
Abstract:Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.




Abstract:The Optical Character Recognition (OCR) task is important for evaluating Vision-Language Models (VLMs) and providing high-quality data sources for LLM training data. While state-of-the-art VLMs show improved average OCR accuracy, they still struggle with sample-level quality degradation and lack reliable automatic detection of low-quality outputs. We introduce Consensus Entropy (CE), a training-free post-inference method that quantifies OCR uncertainty by aggregating outputs from multiple VLMs. Our approach exploits a key insight: correct VLM OCR predictions converge in output space while errors diverge. We develop a lightweight multi-model framework that effectively identifies problematic samples, selects the best outputs and combines model strengths. Experiments across multiple OCR benchmarks and VLMs demonstrate that CE outperforms VLM-as-judge approaches and single-model baselines at the same cost and achieves state-of-the-art results across multiple metrics. For instance, our solution demonstrates: achieving 15.2% higher F1 scores than VLM-as-judge methods in quality verification, delivering 6.0% accuracy gains on mathematical calculation tasks, and requiring rephrasing only 7.3% of inputs while maintaining overall performance. Notably, the entire process requires neither training nor supervision while maintaining plug-and-play functionality throughout.




Abstract:Recently, empowered with the powerful capabilities of neural networks, reinforcement learning (RL) has successfully tackled numerous challenging tasks. However, while these models demonstrate enhanced decision-making abilities, they are increasingly prone to overfitting. For instance, a trained RL model often fails to generalize to even minor variations of the same task, such as a change in background color or other minor semantic differences. To address this issue, we propose a dual-agent adversarial policy learning framework, which allows agents to spontaneously learn the underlying semantics without introducing any human prior knowledge. Specifically, our framework involves a game process between two agents: each agent seeks to maximize the impact of perturbing on the opponent's policy by producing representation differences for the same state, while maintaining its own stability against such perturbations. This interaction encourages agents to learn generalizable policies, capable of handling irrelevant features from the high-dimensional observations. Extensive experimental results on the Procgen benchmark demonstrate that the adversarial process significantly improves the generalization performance of both agents, while also being applied to various RL algorithms, e.g., Proximal Policy Optimization (PPO). With the adversarial framework, the RL agent outperforms the baseline methods by a significant margin, especially in hard-level tasks, marking a significant step forward in the generalization capabilities of deep reinforcement learning.




Abstract:Low-Rank Adaptation (LoRA) is a parameter-efficient technique for rapidly fine-tuning foundation models. In standard LoRA training dynamics, models tend to quickly converge to a local optimum near the initialization. However, this local optimum may not be ideal for out-of-distribution data or tasks such as merging and pruning. In this work, we propose a novel progressive training strategy for LoRA with random layer dropping. This strategy also optimizes the Shapley value of LoRA parameters in each layer, treating each layer as a player in a cooperative game. We refer to this method as Cooperative LoRA (CopRA). Our experimental results demonstrate that parameters trained with CopRA exhibit linear mode connectivity, which enables efficient model merging. This also paves the way for federated learning and multi-task learning via LoRA merging. Additionally, by optimizing the Shapley value, CopRA shows superior performance in pruning tasks.




Abstract:Empirical Risk Minimization (ERM) is fragile in scenarios with insufficient labeled samples. A vanilla extension of ERM to unlabeled samples is Entropy Minimization (EntMin), which employs the soft-labels of unlabeled samples to guide their learning. However, EntMin emphasizes prediction discriminability while neglecting prediction diversity. To alleviate this issue, in this paper, we rethink the guidance information to utilize unlabeled samples. By analyzing the learning objective of ERM, we find that the guidance information for labeled samples in a specific category is the corresponding label encoding. Inspired by this finding, we propose a Label-Encoding Risk Minimization (LERM). It first estimates the label encodings through prediction means of unlabeled samples and then aligns them with their corresponding ground-truth label encodings. As a result, the LERM ensures both prediction discriminability and diversity, and it can be integrated into existing methods as a plugin. Theoretically, we analyze the relationships between LERM and ERM as well as EntMin. Empirically, we verify the superiority of the LERM under several label insufficient scenarios. The codes are available at https://github.com/zhangyl660/LERM.




Abstract:Recent advances achieved by deep learning models rely on the independent and identically distributed assumption, hindering their applications in real-world scenarios with domain shifts. To address the above issues, cross-domain learning aims at extracting domain-invariant knowledge to reduce the domain shift between training and testing data. However, in visual cross-domain learning, traditional methods concentrate solely on the image modality, neglecting the use of the text modality to alleviate the domain shift. In this work, we propose Large Language models as Visual cross-dOmain learners (LLaVO). LLaVO uses vision-language models to convert images into detailed textual descriptions. A large language model is then finetuned on textual descriptions of the source/target domain generated by a designed instruction template. Extensive experimental results on various cross-domain tasks under the domain generalization and unsupervised domain adaptation settings have demonstrated the effectiveness of the proposed method.