Abstract:State-of-the-art vision pretraining methods rely on image-level self-distillation from object-centric datasets such as ImageNet, implicitly assuming each image contains a single object. This assumption does not always hold: many ImageNet images already contain multiple objects. Further, it limits scalability to scene-centric datasets that better mirror real-world complexity. We address these challenges by introducing Object-level Self-DIStillation (ODIS), a pretraining approach that shifts the self-distillation granularity from whole images to individual objects. Using object-aware cropping and masked attention, ODIS isolates object-specific regions, guiding the transformer toward semantically meaningful content and transforming a noisy, scene-level task into simpler object-level sub-tasks. We show that this approach improves visual representations both at the image and patch levels. Using masks at inference time, our method achieves an impressive $82.6\%$ $k$-NN accuracy on ImageNet1k with ViT-Large.
Abstract:Medical image challenges have played a transformative role in advancing the field, catalyzing algorithmic innovation and establishing new performance standards across diverse clinical applications. Image registration, a foundational task in neuroimaging pipelines, has similarly benefited from the Learn2Reg initiative. Building on this foundation, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark designed to assess and advance unsupervised brain MRI registration. Distinct from prior challenges that leveraged anatomical label maps for supervision, LUMIR removes this dependency by providing over 4,000 preprocessed T1-weighted brain MRIs for training without any label maps, encouraging biologically plausible deformation modeling through self-supervision. In addition to evaluating performance on 590 held-out test subjects, LUMIR introduces a rigorous suite of zero-shot generalization tasks, spanning out-of-domain imaging modalities (e.g., FLAIR, T2-weighted, T2*-weighted), disease populations (e.g., Alzheimer's disease), acquisition protocols (e.g., 9.4T MRI), and species (e.g., macaque brains). A total of 1,158 subjects and over 4,000 image pairs were included for evaluation. Performance was assessed using both segmentation-based metrics (Dice coefficient, 95th percentile Hausdorff distance) and landmark-based registration accuracy (target registration error). Across both in-domain and zero-shot tasks, deep learning-based methods consistently achieved state-of-the-art accuracy while producing anatomically plausible deformation fields. The top-performing deep learning-based models demonstrated diffeomorphic properties and inverse consistency, outperforming several leading optimization-based methods, and showing strong robustness to most domain shifts, the exception being a drop in performance on out-of-domain contrasts.
Abstract:Integrating Large Language Models with symbolic planners is a promising direction for obtaining verifiable and grounded plans compared to planning in natural language, with recent works extending this idea to visual domains using Vision-Language Models (VLMs). However, rigorous comparison between VLM-grounded symbolic approaches and methods that plan directly with a VLM has been hindered by a lack of common environments, evaluation protocols and model coverage. We introduce ViPlan, the first open-source benchmark for Visual Planning with symbolic predicates and VLMs. ViPlan features a series of increasingly challenging tasks in two domains: a visual variant of the classic Blocksworld planning problem and a simulated household robotics environment. We benchmark nine open-source VLM families across multiple sizes, along with selected closed models, evaluating both VLM-grounded symbolic planning and using the models directly to propose actions. We find symbolic planning to outperform direct VLM planning in Blocksworld, where accurate image grounding is crucial, whereas the opposite is true in the household robotics tasks, where commonsense knowledge and the ability to recover from errors are beneficial. Finally, we show that across most models and methods, there is no significant benefit to using Chain-of-Thought prompting, suggesting that current VLMs still struggle with visual reasoning.
Abstract:Reasoning tasks are crucial in many domains, especially in science and engineering. Although large language models (LLMs) have made progress in reasoning tasks using techniques such as chain-of-thought and least-to-most prompting, these approaches still do not effectively scale to complex problems in either their performance or execution time. Moreover, they often require additional supervision for each new task, such as in-context examples. In this work, we introduce Recursive Decomposition with Dependencies (RDD), a scalable divide-and-conquer method for solving reasoning problems that requires less supervision than prior approaches. Our method can be directly applied to a new problem class even in the absence of any task-specific guidance. Furthermore, RDD supports sub-task dependencies, allowing for ordered execution of sub-tasks, as well as an error recovery mechanism that can correct mistakes made in previous steps. We evaluate our approach on two benchmarks with six difficulty levels each and in two in-context settings: one with task-specific examples and one without. Our results demonstrate that RDD outperforms other methods in a compute-matched setting as task complexity increases, while also being more computationally efficient.
Abstract:The deformable registration of images of different modalities, essential in many medical imaging applications, remains challenging. The main challenge is developing a robust measure for image overlap despite the compared images capturing different aspects of the underlying tissue. Here, we explore similarity metrics based on functional dependence between intensity values of registered images. Although functional dependence is too restrictive on the global scale, earlier work has shown competitive performance in deformable registration when such measures are applied over small enough contexts. We confirm this finding and further develop the idea by modeling local functional dependence via the linear basis function model with the basis functions learned jointly with the deformation. The measure can be implemented via convolutions, making it efficient to compute on GPUs. We release the method as an easy-to-use tool and show good performance on three datasets compared to well-established baseline and earlier functional dependence-based methods.
Abstract:As the general capabilities of artificial intelligence (AI) agents continue to evolve, their ability to learn to master multiple complex tasks through experience remains a key challenge. Current LLM agents, particularly those based on proprietary language models, typically rely on prompts to incorporate knowledge about the target tasks. This approach does not allow the agent to internalize this information and instead relies on ever-expanding prompts to sustain its functionality in diverse scenarios. This resembles a system of notes used by a person affected by anterograde amnesia, the inability to form new memories. In this paper, we propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for either cumbersome note systems or prior high-quality demonstration data. Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights via a context distillation training procedure. We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset requiring correct sequencing of information retrieval, tool use, and question answering.
Abstract:Health registers contain rich information about individuals' health histories. Here our interest lies in understanding how individuals' health trajectories evolve in a nationwide longitudinal dataset with coded features, such as clinical codes, procedures, and drug purchases. We introduce a straightforward approach for training a Transformer-based deep learning model in a way that lets us analyze how individuals' trajectories change over time. This is achieved by modifying the training objective and by applying a causal attention mask. We focus here on a general task of predicting the onset of a range of common diseases in a given future forecast interval. However, instead of providing a single prediction about diagnoses that could occur in this forecast interval, our approach enable the model to provide continuous predictions at every time point up until, and conditioned on, the time of the forecast period. We find that this model performs comparably to other models, including a bi-directional transformer model, in terms of basic prediction performance while at the same time offering promising trajectory modeling properties. We explore a couple of ways to use this model for analyzing health trajectories and aiding in early detection of events that forecast possible later disease onsets. We hypothesize that this method may be helpful in continuous monitoring of peoples' health trajectories and enabling interventions in ongoing health trajectories, as well as being useful in retrospective analyses.
Abstract:Nursing notes, an important component of Electronic Health Records (EHRs), keep track of the progression of a patient's health status during a care episode. Distilling the key information in nursing notes through text summarization techniques can improve clinicians' efficiency in understanding patients' conditions when reviewing nursing notes. However, existing abstractive summarization methods in the clinical setting have often overlooked nursing notes and require the creation of reference summaries for supervision signals, which is time-consuming. In this work, we introduce QGSumm, a query-guided self-supervised domain adaptation framework for nursing note summarization. Using patient-related clinical queries as guidance, our approach generates high-quality, patient-centered summaries without relying on reference summaries for training. Through automatic and manual evaluation by an expert clinician, we demonstrate the strengths of our approach compared to the state-of-the-art Large Language Models (LLMs) in both zero-shot and few-shot settings. Ultimately, our approach provides a new perspective on conditional text summarization, tailored to the specific interests of clinical personnel.
Abstract:This work aims to improve generalization and interpretability of dynamical systems by recovering the underlying lower-dimensional latent states and their time evolutions. Previous work on disentangled representation learning within the realm of dynamical systems focused on the latent states, possibly with linear transition approximations. As such, they cannot identify nonlinear transition dynamics, and hence fail to reliably predict complex future behavior. Inspired by the advances in nonlinear ICA, we propose a state-space modeling framework in which we can identify not just the latent states but also the unknown transition function that maps the past states to the present. We introduce a practical algorithm based on variational auto-encoders and empirically demonstrate in realistic synthetic settings that we can (i) recover latent state dynamics with high accuracy, (ii) correspondingly achieve high future prediction accuracy, and (iii) adapt fast to new environments.
Abstract:Uncertainty quantification in Large Language Models (LLMs) is crucial for applications where safety and reliability are important. In particular, uncertainty can be used to improve the trustworthiness of LLMs by detecting factually incorrect model responses, commonly called hallucinations. Critically, one should seek to capture the model's semantic uncertainty, i.e., the uncertainty over the meanings of LLM outputs, rather than uncertainty over lexical or syntactic variations that do not affect answer correctness. To address this problem, we propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs. KLE defines positive semidefinite unit trace kernels to encode the semantic similarities of LLM outputs and quantifies uncertainty using the von Neumann entropy. It considers pairwise semantic dependencies between answers (or semantic clusters), providing more fine-grained uncertainty estimates than previous methods based on hard clustering of answers. We theoretically prove that KLE generalizes the previous state-of-the-art method called semantic entropy and empirically demonstrate that it improves uncertainty quantification performance across multiple natural language generation datasets and LLM architectures.