Abstract:Model reduction, which aims to learn a simpler model of the original mixed integer linear programming (MILP), can solve large-scale MILP problems much faster. Most existing model reduction methods are based on variable reduction, which predicts a solution value for a subset of variables. From a dual perspective, constraint reduction that transforms a subset of inequality constraints into equalities can also reduce the complexity of MILP, but has been largely ignored. Therefore, this paper proposes a novel constraint-based model reduction approach for the MILP. Constraint-based MILP reduction has two challenges: 1) which inequality constraints are critical such that reducing them can accelerate MILP solving while preserving feasibility, and 2) how to predict these critical constraints efficiently. To identify critical constraints, we first label these tight-constraints at the optimal solution as potential critical constraints and design a heuristic rule to select a subset of critical tight-constraints. To learn the critical tight-constraints, we propose a multi-modal representation technique that leverages information from both instance-level and abstract-level MILP formulations. The experimental results show that, compared to the state-of-the-art methods, our method improves the quality of the solution by over 50\% and reduces the computation time by 17.47\%.
Abstract:Recent breakthroughs in autonomous experimentation have demonstrated remarkable physical capabilities, yet their cognitive control remains limited--often relying on static heuristics or classical optimization. A core limitation is the absence of a principled mechanism to detect and adapt to the unexpectedness. While traditional surprise measures--such as Shannon or Bayesian Surprise--offer momentary detection of deviation, they fail to capture whether a system is truly learning and adapting. In this work, we introduce Mutual Information Surprise (MIS), a new framework that redefines surprise not as anomaly detection, but as a signal of epistemic growth. MIS quantifies the impact of new observations on mutual information, enabling autonomous systems to reflect on their learning progression. We develop a statistical test sequence to detect meaningful shifts in estimated mutual information and propose a mutual information surprise reaction policy (MISRP) that dynamically governs system behavior through sampling adjustment and process forking. Empirical evaluations--on both synthetic domains and a dynamic pollution map estimation task--show that MISRP-governed strategies significantly outperform classical surprise-based approaches in stability, responsiveness, and predictive accuracy. By shifting surprise from reactive to reflective, MIS offers a path toward more self-aware and adaptive autonomous systems.
Abstract:Our purpose is to improve performance-based animation which can drive believable 3D stylized characters that are truly perceptual. By combining traditional blendshape animation techniques with multiple machine learning models, we present both non-real time and real time solutions which drive character expressions in a geometrically consistent and perceptually valid way. For the non-real time system, we propose a 3D emotion transfer network makes use of a 2D human image to generate a stylized 3D rig parameters. For the real time system, we propose a blendshape adaption network which generates the character rig parameter motions with geometric consistency and temporally stability. We demonstrate the effectiveness of our system by comparing to a commercial product Faceware. Results reveal that ratings of the recognition, intensity, and attractiveness of expressions depicted for animated characters via our systems are statistically higher than Faceware. Our results may be implemented into the animation pipeline, and provide animators with a system for creating the expressions they wish to use more quickly and accurately.
Abstract:This paper introduces SecRepoBench, a benchmark to evaluate LLMs on secure code generation in real-world repositories. SecRepoBench has 318 code generation tasks in 27 C/C++ repositories, covering 15 CWEs. We evaluate 19 state-of-the-art LLMs using our benchmark and find that the models struggle with generating correct and secure code. In addition, the performance of LLMs to generate self-contained programs as measured by prior benchmarks do not translate to comparative performance at generating secure and correct code at the repository level in SecRepoBench. We show that the state-of-the-art prompt engineering techniques become less effective when applied to the repository level secure code generation problem. We conduct extensive experiments, including an agentic technique to generate secure code, to demonstrate that our benchmark is currently the most difficult secure coding benchmark, compared to previous state-of-the-art benchmarks. Finally, our comprehensive analysis provides insights into potential directions for enhancing the ability of LLMs to generate correct and secure code in real-world repositories.
Abstract:This paper explores the ability of Graph Neural Networks (GNNs) in learning various forms of information for link prediction, alongside a brief review of existing link prediction methods. Our analysis reveals that GNNs cannot effectively learn structural information related to the number of common neighbors between two nodes, primarily due to the nature of set-based pooling of the neighborhood aggregation scheme. Also, our extensive experiments indicate that trainable node embeddings can improve the performance of GNN-based link prediction models. Importantly, we observe that the denser the graph, the greater such the improvement. We attribute this to the characteristics of node embeddings, where the link state of each link sample could be encoded into the embeddings of nodes that are involved in the neighborhood aggregation of the two nodes in that link sample. In denser graphs, every node could have more opportunities to attend the neighborhood aggregation of other nodes and encode states of more link samples to its embedding, thus learning better node embeddings for link prediction. Lastly, we demonstrate that the insights gained from our research carry important implications in identifying the limitations of existing link prediction methods, which could guide the future development of more robust algorithms.
Abstract:Individuals have unique facial expression and head pose styles that reflect their personalized speaking styles. Existing one-shot talking head methods cannot capture such personalized characteristics and therefore fail to produce diverse speaking styles in the final videos. To address this challenge, we propose a one-shot style-controllable talking face generation method that can obtain speaking styles from reference speaking videos and drive the one-shot portrait to speak with the reference speaking styles and another piece of audio. Our method aims to synthesize the style-controllable coefficients of a 3D Morphable Model (3DMM), including facial expressions and head movements, in a unified framework. Specifically, the proposed framework first leverages a style encoder to extract the desired speaking styles from the reference videos and transform them into style codes. Then, the framework uses a style-aware decoder to synthesize the coefficients of 3DMM from the audio input and style codes. During decoding, our framework adopts a two-branch architecture, which generates the stylized facial expression coefficients and stylized head movement coefficients, respectively. After obtaining the coefficients of 3DMM, an image renderer renders the expression coefficients into a specific person's talking-head video. Extensive experiments demonstrate that our method generates visually authentic talking head videos with diverse speaking styles from only one portrait image and an audio clip.
Abstract:For users in hotspot region, orbital angular momentum (OAM) can realize multifold increase of spectrum efficiency (SE), and the flying base station (FBS) can rapidly support the real-time communication demand. However, the hollow divergence and alignment requirement impose crucial challenges for users to achieve air-to-ground OAM communications, where there exists the line-of-sight path. Therefore, we propose the air-to-ground cooperative OAM communication (ACOC) scheme, which can realize OAM communications for users with size-limited devices. The waist radius is adjusted to guarantee the maximum intensity at the cooperative users (CUs). We derive the closed-form expression of the optimal FBS position, which satisfies the antenna alignment for two cooperative user groups (CUGs). Furthermore, the selection constraint is given to choose two CUGs composed of four CUs. Simulation results are provided to validate the optimal FBS position and the SE superiority of the proposed ACOC scheme.
Abstract:Orbital angular momentum (OAM) and rate splitting (RS) are the potential key techniques for the future wireless communications. As a new orthogonal resource, OAM can achieve the multifold increase of spectrum efficiency to relieve the scarcity of the spectrum resource, but how to enhance the privacy performance imposes crucial challenge for OAM communications. RS technique divides the information into private and common parts, which can guarantee the privacies for all users. In this paper, we integrate the RS technique into downlink OAM-MIMO communications, and study the precoding optimization to maximize the sum capacity. First, the concentric uniform circular arrays (UCAs) are utilized to construct the downlink transmission framework of OAM-MIMO communications with RS. Particularly, users in the same user pair utilize RS technique to obtain the information and different user pairs use different OAM modes. Then, we derive the OAM-MIMO channel model, and formulate the sum capacity maximization problem. Finally, based on the fractional programming, the optimal precoding matrix is obtained to maximize the sum capacity by using quadratic transformation. Extensive simulation results show that by using the proposed precoding optimization algorithm, OAM-MIMO communications with RS can achieve higher sum capacity than the traditional communication schemes.
Abstract:Facial Expression Analysis remains a challenging task due to unexpected task-irrelevant noise, such as identity, head pose, and background. To address this issue, this paper proposes a novel framework, called Norface, that is unified for both Action Unit (AU) analysis and Facial Emotion Recognition (FER) tasks. Norface consists of a normalization network and a classification network. First, the carefully designed normalization network struggles to directly remove the above task-irrelevant noise, by maintaining facial expression consistency but normalizing all original images to a common identity with consistent pose, and background. Then, these additional normalized images are fed into the classification network. Due to consistent identity and other factors (e.g. head pose, background, etc.), the normalized images enable the classification network to extract useful expression information more effectively. Additionally, the classification network incorporates a Mixture of Experts to refine the latent representation, including handling the input of facial representations and the output of multiple (AU or emotion) labels. Extensive experiments validate the carefully designed framework with the insight of identity normalization. The proposed method outperforms existing SOTA methods in multiple facial expression analysis tasks, including AU detection, AU intensity estimation, and FER tasks, as well as their cross-dataset tasks. For the normalized datasets and code please visit {https://norface-fea.github.io/}.
Abstract:Prognosis and Health Management (PHM), critical for ensuring task completion by complex systems and preventing unexpected failures, is widely adopted in aerospace, manufacturing, maritime, rail, energy, etc. However, PHM's development is constrained by bottlenecks like generalization, interpretation and verification abilities. Presently, generative artificial intelligence (AI), represented by Large Model, heralds a technological revolution with the potential to fundamentally reshape traditional technological fields and human production methods. Its capabilities, including strong generalization, reasoning, and generative attributes, present opportunities to address PHM's bottlenecks. To this end, based on a systematic analysis of the current challenges and bottlenecks in PHM, as well as the research status and advantages of Large Model, we propose a novel concept and three progressive paradigms of Prognosis and Health Management Large Model (PHM-LM) through the integration of the Large Model with PHM. Subsequently, we provide feasible technical approaches for PHM-LM to bolster PHM's core capabilities within the framework of the three paradigms. Moreover, to address core issues confronting PHM, we discuss a series of technical challenges of PHM-LM throughout the entire process of construction and application. This comprehensive effort offers a holistic PHM-LM technical framework, and provides avenues for new PHM technologies, methodologies, tools, platforms and applications, which also potentially innovates design, research & development, verification and application mode of PHM. And furthermore, a new generation of PHM with AI will also capably be realized, i.e., from custom to generalized, from discriminative to generative, and from theoretical conditions to practical applications.