Abstract:Recommender systems present relevant contents to users and help content creators reach their target audience. The dual nature of these systems influences both users and creators: users' preferences are affected by the items they are recommended, while creators are incentivized to alter their contents such that it is recommended more frequently. We define a model, called user-creator feature dynamics, to capture the dual influences of recommender systems. We prove that a recommender system with dual influence is guaranteed to polarize, causing diversity loss in the system. We then investigate, both theoretically and empirically, approaches for mitigating polarization and promoting diversity in recommender systems. Unexpectedly, we find that common diversity-promoting approaches do not work in the presence of dual influence, while relevancy-optimizing methods like top-$k$ recommendation can prevent polarization and improve diversity of the system.
Abstract:Prognosis and Health Management (PHM), critical for ensuring task completion by complex systems and preventing unexpected failures, is widely adopted in aerospace, manufacturing, maritime, rail, energy, etc. However, PHM's development is constrained by bottlenecks like generalization, interpretation and verification abilities. Presently, generative artificial intelligence (AI), represented by Large Model, heralds a technological revolution with the potential to fundamentally reshape traditional technological fields and human production methods. Its capabilities, including strong generalization, reasoning, and generative attributes, present opportunities to address PHM's bottlenecks. To this end, based on a systematic analysis of the current challenges and bottlenecks in PHM, as well as the research status and advantages of Large Model, we propose a novel concept and three progressive paradigms of Prognosis and Health Management Large Model (PHM-LM) through the integration of the Large Model with PHM. Subsequently, we provide feasible technical approaches for PHM-LM to bolster PHM's core capabilities within the framework of the three paradigms. Moreover, to address core issues confronting PHM, we discuss a series of technical challenges of PHM-LM throughout the entire process of construction and application. This comprehensive effort offers a holistic PHM-LM technical framework, and provides avenues for new PHM technologies, methodologies, tools, platforms and applications, which also potentially innovates design, research & development, verification and application mode of PHM. And furthermore, a new generation of PHM with AI will also capably be realized, i.e., from custom to generalized, from discriminative to generative, and from theoretical conditions to practical applications.
Abstract:Federated Learning (FL) endeavors to harness decentralized data while preserving privacy, facing challenges of performance, scalability, and collaboration. Asynchronous Federated Learning (AFL) methods have emerged as promising alternatives to their synchronous counterparts bounded by the slowest agent, yet they add additional challenges in convergence guarantees, fairness with respect to compute heterogeneity, and incorporation of staleness in aggregated updates. Specifically, AFL biases model training heavily towards agents who can produce updates faster, leaving slower agents behind, who often also have differently distributed data which is not learned by the global model. Naively upweighting introduces incentive issues, where true fast updating agents may falsely report updates at a slower speed to increase their contribution to model training. We introduce FedStaleWeight, an algorithm addressing fairness in aggregating asynchronous client updates by employing average staleness to compute fair re-weightings. FedStaleWeight reframes asynchronous federated learning aggregation as a mechanism design problem, devising a weighting strategy that incentivizes truthful compute speed reporting without favoring faster update-producing agents by upweighting agent updates based on staleness. Leveraging only observed agent update staleness, FedStaleWeight results in more equitable aggregation on a per-agent basis. We both provide theoretical convergence guarantees in the smooth, non-convex setting and empirically compare FedStaleWeight against the commonly used asynchronous FedBuff with gradient averaging, demonstrating how it achieves stronger fairness, expediting convergence to a higher global model accuracy. Finally, we provide an open-source test bench to facilitate exploration of buffered AFL aggregation strategies, fostering further research in asynchronous federated learning paradigms.
Abstract:We study a repeated Bayesian persuasion problem (and more generally, any generalized principal-agent problem with complete information) where the principal does not have commitment power and the agent uses algorithms to learn to respond to the principal's signals. We reduce this problem to a one-shot generalized principal-agent problem with an approximately-best-responding agent. This reduction allows us to show that: if the agent uses contextual no-regret learning algorithms, then the principal can guarantee a utility that is arbitrarily close to the principal's optimal utility in the classic non-learning model with commitment; if the agent uses contextual no-swap-regret learning algorithms, then the principal cannot obtain any utility significantly more than the optimal utility in the non-learning model with commitment. The difference between the principal's obtainable utility in the learning model and the non-learning model is bounded by the agent's regret (swap-regret). If the agent uses mean-based learning algorithms (which can be no-regret but not no-swap-regret), then the principal can do significantly better than the non-learning model. These conclusions hold not only for Bayesian persuasion, but also for any generalized principal-agent problem with complete information, including Stackelberg games and contract design.
Abstract:Artificial Intelligence (AI) holds promise as a technology that can be used to improve government and economic policy-making. This paper proposes a new research agenda towards this end by introducing Social Environment Design, a general framework for the use of AI for automated policy-making that connects with the Reinforcement Learning, EconCS, and Computational Social Choice communities. The framework seeks to capture general economic environments, includes voting on policy objectives, and gives a direction for the systematic analysis of government and economic policy through AI simulation. We highlight key open problems for future research in AI-based policy-making. By solving these challenges, we hope to achieve various social welfare objectives, thereby promoting more ethical and responsible decision making.
Abstract:We consider multiple senders with informational advantage signaling to convince a single self-interested actor towards certain actions. Generalizing the seminal Bayesian Persuasion framework, such settings are ubiquitous in computational economics, multi-agent learning, and machine learning with multiple objectives. The core solution concept here is the Nash equilibrium of senders' signaling policies. Theoretically, we prove that finding an equilibrium in general is PPAD-Hard; in fact, even computing a sender's best response is NP-Hard. Given these intrinsic difficulties, we turn to finding local Nash equilibria. We propose a novel differentiable neural network to approximate this game's non-linear and discontinuous utilities. Complementing this with the extra-gradient algorithm, we discover local equilibria that Pareto dominates full-revelation equilibria and those found by existing neural networks. Broadly, our theoretical and empirical contributions are of interest to a large class of economic problems.
Abstract:We propose modeling real-world data markets, where sellers post fixed prices and buyers are free to purchase from any set of sellers they please, as a simultaneous-move game between the buyers. A key component of this model is the negative externality buyers induce on one another due to purchasing similar data, a phenomenon exacerbated by its easy replicability. In the complete-information setting, where all buyers know their valuations, we characterize both the existence and the quality (with respect to optimal social welfare) of the pure-strategy Nash equilibrium under various models of buyer externality. While this picture is bleak without any market intervention, reinforcing the inadequacy of modern data markets, we prove that for a broad class of externality functions, market intervention in the form of a revenue-neutral transaction cost can lead to a pure-strategy equilibrium with strong welfare guarantees. We further show that this intervention is amenable to the more realistic setting where buyers start with unknown valuations and learn them over time through repeated market interactions. For such a setting, we provide an online learning algorithm for each buyer that achieves low regret guarantees with respect to both individual buyers' strategy and social welfare optimal. Our work paves the way for considering simple intervention strategies for existing fixed-price data markets to address their shortcoming and the unique challenges put forth by data products.
Abstract:The classic Bayesian persuasion model assumes a Bayesian and best-responding receiver. We study a relaxation of the Bayesian persuasion model where the receiver can approximately best respond to the sender's signaling scheme. We show that, under natural assumptions, (1) the sender can find a signaling scheme that guarantees itself an expected utility almost as good as its optimal utility in the classic model, no matter what approximately best-responding strategy the receiver uses; (2) on the other hand, there is no signaling scheme that gives the sender much more utility than its optimal utility in the classic model, even if the receiver uses the approximately best-responding strategy that is best for the sender. Together, (1) and (2) imply that the approximately best-responding behavior of the receiver does not affect the sender's maximal achievable utility a lot in the Bayesian persuasion problem. The proofs of both results rely on the idea of robustification of a Bayesian persuasion scheme: given a pair of the sender's signaling scheme and the receiver's strategy, we can construct another signaling scheme such that the receiver prefers to use that strategy in the new scheme more than in the original scheme, and the two schemes give the sender similar utilities. As an application of our main result (1), we show that, in a repeated Bayesian persuasion model where the receiver learns to respond to the sender by some algorithms, the sender can do almost as well as in the classic model. Interestingly, unlike (2), with a learning receiver the sender can sometimes do much better than in the classic model.
Abstract:Artificial intelligence (AI) systems are increasingly used for providing advice to facilitate human decision making. While a large body of work has explored how AI systems can be optimized to produce accurate and fair advice and how algorithmic advice should be presented to human decision makers, in this work we ask a different basic question: When should algorithms provide advice? Motivated by limitations of the current practice of constantly providing algorithmic advice, we propose the design of AI systems that interact with the human user in a two-sided manner and provide advice only when it is likely to be beneficial to the human in making their decision. Our AI systems learn advising policies using past human decisions. Then, for new cases, the learned policies utilize input from the human to identify cases where algorithmic advice would be useful, as well as those where the human is better off deciding alone. We conduct a large-scale experiment to evaluate our approach by using data from the US criminal justice system on pretrial-release decisions. In our experiment, participants were asked to assess the risk of defendants to violate their release terms if released and were advised by different advising approaches. The results show that our interactive-advising approach manages to provide advice at times of need and to significantly improve human decision making compared to fixed, non-interactive advising approaches. Our approach has additional advantages in facilitating human learning, preserving complementary strengths of human decision makers, and leading to more positive responsiveness to the advice.
Abstract:We consider a Bayesian forecast aggregation model where $n$ experts, after observing private signals about an unknown binary event, report their posterior beliefs about the event to a principal, who then aggregates the reports into a single prediction for the event. The signals of the experts and the outcome of the event follow a joint distribution that is unknown to the principal, but the principal has access to i.i.d. "samples" from the distribution, where each sample is a tuple of experts' reports (not signals) and the realization of the event. Using these samples, the principal aims to find an $\varepsilon$-approximately optimal (Bayesian) aggregator. We study the sample complexity of this problem. We show that, for arbitrary discrete distributions, the number of samples must be at least $\tilde \Omega(m^{n-2} / \varepsilon)$, where $m$ is the size of each expert's signal space. This sample complexity grows exponentially in the number of experts $n$. But if experts' signals are independent conditioned on the realization of the event, then the sample complexity is significantly reduced, to $\tilde O(1 / \varepsilon^2)$, which does not depend on $n$.