Abstract:The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
Abstract:Hierarchical Bayesian models are increasingly used in large, inhomogeneous complex network dynamical systems by modeling parameters as draws from a hyperparameter-governed distribution. However, theoretical guarantees for these estimates as the system size grows have been lacking. A critical concern is that hyperparameter estimation may diverge for larger networks, undermining the model's reliability. Formulating the system's evolution in a measure transport perspective, we propose a theoretical framework for estimating hyperparameters with mean-type observations, which are prevalent in many scientific applications. Our primary contribution is a nonasymptotic bound for the deviation of estimate of hyperparameters in inhomogeneous complex network dynamical systems with respect to network population size, which is established for a general family of optimization algorithms within a fixed observation duration. While we firstly establish a consistency result for systems with independent nodes, our main result extends this guarantee to the more challenging and realistic setting of weakly-dependent nodes. We validate our theoretical findings with numerical experiments on two representative models: a Susceptible-Infected-Susceptible model and a Spiking Neuronal Network model. In both cases, the results confirm that the estimation error decreases as the network population size increases, aligning with our theoretical guarantees. This research proposes the foundational theory to ensure that hierarchical Bayesian methods are statistically consistent for large-scale inhomogeneous systems, filling a gap in this area of theoretical research and justifying their application in practice.
Abstract:Graph unlearning has emerged as a critical mechanism for supporting sustainable and privacy-preserving social networks, enabling models to remove the influence of deleted nodes and thereby better safeguard user information. However, we observe that existing graph unlearning techniques insufficiently protect sensitive attributes, often leading to degraded algorithmic fairness compared with traditional graph learning methods. To address this gap, we introduce FairGU, a fairness-aware graph unlearning framework designed to preserve both utility and fairness during the unlearning process. FairGU integrates a dedicated fairness-aware module with effective data protection strategies, ensuring that sensitive attributes are neither inadvertently amplified nor structurally exposed when nodes are removed. Through extensive experiments on multiple real-world datasets, we demonstrate that FairGU consistently outperforms state-of-the-art graph unlearning methods and fairness-enhanced graph learning baselines in terms of both accuracy and fairness metrics. Our findings highlight a previously overlooked risk in current unlearning practices and establish FairGU as a robust and equitable solution for the next generation of socially sustainable networked systems. The codes are available at https://github.com/LuoRenqiang/FairGU.
Abstract:Large language model (LLM) agents face fundamental limitations in long-horizon reasoning due to finite context windows, making effective memory management critical. Existing methods typically handle long-term memory (LTM) and short-term memory (STM) as separate components, relying on heuristics or auxiliary controllers, which limits adaptability and end-to-end optimization. In this paper, we propose Agentic Memory (AgeMem), a unified framework that integrates LTM and STM management directly into the agent's policy. AgeMem exposes memory operations as tool-based actions, enabling the LLM agent to autonomously decide what and when to store, retrieve, update, summarize, or discard information. To train such unified behaviors, we propose a three-stage progressive reinforcement learning strategy and design a step-wise GRPO to address sparse and discontinuous rewards induced by memory operations. Experiments on five long-horizon benchmarks demonstrate that AgeMem consistently outperforms strong memory-augmented baselines across multiple LLM backbones, achieving improved task performance, higher-quality long-term memory, and more efficient context usage.




Abstract:Accurate medical image segmentation is essential for clinical diagnosis and treatment planning. While recent interactive foundation models (e.g., nnInteractive) enhance generalization through large-scale multimodal pretraining, they still depend on precise prompts and often perform below expectations in contexts that are underrepresented in their training data. We present AtlasSegFM, an atlas-guided framework that customizes available foundation models to clinical contexts with a single annotated example. The core innovations are: 1) a pipeline that provides context-aware prompts for foundation models via registration between a context atlas and query images, and 2) a test-time adapter to fuse predictions from both atlas registration and the foundation model. Extensive experiments across public and in-house datasets spanning multiple modalities and organs demonstrate that AtlasSegFM consistently improves segmentation, particularly for small, delicate structures. AtlasSegFM provides a lightweight, deployable solution one-shot customization of foundation models in real-world clinical workflows. The code will be made publicly available.




Abstract:Multimodal Face Anti-Spoofing (FAS) methods, which integrate multiple visual modalities, often suffer even more severe performance degradation than unimodal FAS when deployed in unseen domains. This is mainly due to two overlooked risks that affect cross-domain multimodal generalization. The first is the modal representation invariant risk, i.e., whether representations remain generalizable under domain shift. We theoretically show that the inherent class asymmetry in FAS (diverse spoofs vs. compact reals) enlarges the upper bound of generalization error, and this effect is further amplified in multimodal settings. The second is the modal synergy invariant risk, where models overfit to domain-specific inter-modal correlations. Such spurious synergy cannot generalize to unseen attacks in target domains, leading to performance drops. To solve these issues, we propose a provable framework, namely Multimodal Representation and Synergy Invariance Learning (RiSe). For representation risk, RiSe introduces Asymmetric Invariant Risk Minimization (AsyIRM), which learns an invariant spherical decision boundary in radial space to fit asymmetric distributions, while preserving domain cues in angular space. For synergy risk, RiSe employs Multimodal Synergy Disentanglement (MMSD), a self-supervised task enhancing intrinsic, generalizable modal features via cross-sample mixing and disentanglement. Theoretical analysis and experiments verify RiSe, which achieves state-of-the-art cross-domain performance.
Abstract:Event cameras sense brightness changes and output binary asynchronous event streams, attracting increasing attention. Their bio-inspired dynamics align well with spiking neural networks (SNNs), offering a promising energy-efficient alternative to conventional vision systems. However, SNNs remain costly to train due to temporal coding, which limits their practical deployment. To alleviate the high training cost of SNNs, we introduce \textbf{PACE} (Phase-Aligned Condensation for Events), the first dataset distillation framework to SNNs and event-based vision. PACE distills a large training dataset into a compact synthetic one that enables fast SNN training, which is achieved by two core modules: \textbf{ST-DSM} and \textbf{PEQ-N}. ST-DSM uses residual membrane potentials to densify spike-based features (SDR) and to perform fine-grained spatiotemporal matching of amplitude and phase (ST-SM), while PEQ-N provides a plug-and-play straight through probabilistic integer quantizer compatible with standard event-frame pipelines. Across DVS-Gesture, CIFAR10-DVS, and N-MNIST datasets, PACE outperforms existing coreset selection and dataset distillation baselines, with particularly strong gains on dynamic event streams and at low or moderate IPC. Specifically, on N-MNIST, it achieves \(84.4\%\) accuracy, about \(85\%\) of the full training set performance, while reducing training time by more than \(50\times\) and storage cost by \(6000\times\), yielding compact surrogates that enable minute-scale SNN training and efficient edge deployment.
Abstract:The integration of event cameras and spiking neural networks (SNNs) promises energy-efficient visual intelligence, yet scarce event data and the sparsity of DVS outputs hinder effective training. Prior knowledge transfers from RGB to DVS often underperform because the distribution gap between modalities is substantial. In this work, we present Time-step Mixup Knowledge Transfer (TMKT), a cross-modal training framework with a probabilistic Time-step Mixup (TSM) strategy. TSM exploits the asynchronous nature of SNNs by interpolating RGB and DVS inputs at various time steps to produce a smooth curriculum within each sequence, which reduces gradient variance and stabilizes optimization with theoretical analysis. To employ auxiliary supervision from TSM, TMKT introduces two lightweight modality-aware objectives, Modality Aware Guidance (MAG) for per-frame source supervision and Mixup Ratio Perception (MRP) for sequence-level mix ratio estimation, which explicitly align temporal features with the mixing schedule. TMKT enables smoother knowledge transfer, helps mitigate modality mismatch during training, and achieves superior performance in spiking image classification tasks. Extensive experiments across diverse benchmarks and multiple SNN backbones, together with ablations, demonstrate the effectiveness of our method.
Abstract:Brain-inspired Spiking neural networks (SNNs) promise energy-efficient intelligence via event-driven, sparse computation, but deeper architectures inflate parameters and computational cost, hindering their edge deployment. Recent progress in SNN pruning helps alleviate this burden, yet existing efforts fall into only two families: \emph{unstructured} pruning, which attains high sparsity but is difficult to accelerate on general hardware, and \emph{structured} pruning, which eases deployment but lack flexibility and often degrades accuracy at matched sparsity. In this work, we introduce \textbf{SpikeNM}, the first SNN-oriented \emph{semi-structured} \(N{:}M\) pruning framework that learns sparse SNNs \emph{from scratch}, enforcing \emph{at most \(N\)} non-zeros per \(M\)-weight block. To avoid the combinatorial space complexity \(\sum_{k=1}^{N}\binom{M}{k}\) growing exponentially with \(M\), SpikeNM adopts an \(M\)-way basis-logit parameterization with a differentiable top-\(k\) sampler, \emph{linearizing} per-block complexity to \(\mathcal O(M)\) and enabling more aggressive sparsification. Further inspired by neuroscience, we propose \emph{eligibility-inspired distillation} (EID), which converts temporally accumulated credits into block-wise soft targets to align mask probabilities with spiking dynamics, reducing sampling variance and stabilizing search under high sparsity. Experiments show that at \(2{:}4\) sparsity, SpikeNM maintains and even with gains across main-stream datasets, while yielding hardware-amenable patterns that complement intrinsic spike sparsity.
Abstract:Large-scale Video Foundation Models (VFMs) has significantly advanced various video-related tasks, either through task-specific models or Multi-modal Large Language Models (MLLMs). However, the open accessibility of VFMs also introduces critical security risks, as adversaries can exploit full knowledge of the VFMs to launch potent attacks. This paper investigates a novel and practical adversarial threat scenario: attacking downstream models or MLLMs fine-tuned from open-source VFMs, without requiring access to the victim task, training data, model query, and architecture. In contrast to conventional transfer-based attacks that rely on task-aligned surrogate models, we demonstrate that adversarial vulnerabilities can be exploited directly from the VFMs. To this end, we propose the Transferable Video Attack (TVA), a temporal-aware adversarial attack method that leverages the temporal representation dynamics of VFMs to craft effective perturbations. TVA integrates a bidirectional contrastive learning mechanism to maximize the discrepancy between the clean and adversarial features, and introduces a temporal consistency loss that exploits motion cues to enhance the sequential impact of perturbations. TVA avoids the need to train expensive surrogate models or access to domain-specific data, thereby offering a more practical and efficient attack strategy. Extensive experiments across 24 video-related tasks demonstrate the efficacy of TVA against downstream models and MLLMs, revealing a previously underexplored security vulnerability in the deployment of video models.