Abstract:Algorithmic fairness has become a central topic in machine learning, and mitigating disparities across different subpopulations has emerged as a rapidly growing research area. In this paper, we systematically study the classification of functional data under fairness constraints, ensuring the disparity level of the classifier is controlled below a pre-specified threshold. We propose a unified framework for fairness-aware functional classification, tackling an infinite-dimensional functional space, addressing key challenges from the absence of density ratios and intractability of posterior probabilities, and discussing unique phenomena in functional classification. We further design a post-processing algorithm, Fair Functional Linear Discriminant Analysis classifier (Fair-FLDA), which targets at homoscedastic Gaussian processes and achieves fairness via group-wise thresholding. Under weak structural assumptions on eigenspace, theoretical guarantees on fairness and excess risk controls are established. As a byproduct, our results cover the excess risk control of the standard FLDA as a special case, which, to the best of our knowledge, is first time seen. Our theoretical findings are complemented by extensive numerical experiments on synthetic and real datasets, highlighting the practicality of our designed algorithm.
Abstract:This paper explores the field of semi-supervised Fr\'echet regression, driven by the significant costs associated with obtaining non-Euclidean labels. Methodologically, we propose two novel methods: semi-supervised NW Fr\'echet regression and semi-supervised kNN Fr\'echet regression, both based on graph distance acquired from all feature instances. These methods extend the scope of existing semi-supervised Euclidean regression methods. We establish their convergence rates with limited labeled data and large amounts of unlabeled data, taking into account the low-dimensional manifold structure of the feature space. Through comprehensive simulations across diverse settings and applications to real data, we demonstrate the superior performance of our methods over their supervised counterparts. This study addresses existing research gaps and paves the way for further exploration and advancements in the field of semi-supervised Fr\'echet regression.