Abstract:Parameter-efficient fine-tuning (PEFT) has emerged as a popular strategy for adapting large vision foundation models, such as the Segment Anything Model (SAM) and LLaVA, to downstream tasks like image forgery detection and localization (IFDL). However, existing PEFT-based approaches overlook their vulnerability to adversarial attacks. In this paper, we show that highly transferable adversarial images can be crafted solely via the upstream model, without accessing the downstream model or training data, significantly degrading the IFDL performance. To address this, we propose ForensicsSAM, a unified IFDL framework with built-in adversarial robustness. Our design is guided by three key ideas: (1) To compensate for the lack of forgery-relevant knowledge in the frozen image encoder, we inject forgery experts into each transformer block to enhance its ability to capture forgery artifacts. These forgery experts are always activated and shared across any input images. (2) To detect adversarial images, we design an light-weight adversary detector that learns to capture structured, task-specific artifact in RGB domain, enabling reliable discrimination across various attack methods. (3) To resist adversarial attacks, we inject adversary experts into the global attention layers and MLP modules to progressively correct feature shifts induced by adversarial noise. These adversary experts are adaptively activated by the adversary detector, thereby avoiding unnecessary interference with clean images. Extensive experiments across multiple benchmarks demonstrate that ForensicsSAM achieves superior resistance to various adversarial attack methods, while also delivering state-of-the-art performance in image-level forgery detection and pixel-level forgery localization. The resource is available at https://github.com/siriusPRX/ForensicsSAM.
Abstract:With the rise of social media, vast amounts of user-uploaded videos (e.g., YouTube) are utilized as training data for Visual Object Tracking (VOT). However, the VOT community has largely overlooked video data-privacy issues, as many private videos have been collected and used for training commercial models without authorization. To alleviate these issues, this paper presents the first investigation on preventing personal video data from unauthorized exploitation by deep trackers. Existing methods for preventing unauthorized data use primarily focus on image-based tasks (e.g., image classification), directly applying them to videos reveals several limitations, including inefficiency, limited effectiveness, and poor generalizability. To address these issues, we propose a novel generative framework for generating Temporal Unlearnable Examples (TUEs), and whose efficient computation makes it scalable for usage on large-scale video datasets. The trackers trained w/ TUEs heavily rely on unlearnable noises for temporal matching, ignoring the original data structure and thus ensuring training video data-privacy. To enhance the effectiveness of TUEs, we introduce a temporal contrastive loss, which further corrupts the learning of existing trackers when using our TUEs for training. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in video data-privacy protection, with strong transferability across VOT models, datasets, and temporal matching tasks.
Abstract:Most existing unlearnable strategies focus on preventing unauthorized users from training single-task learning (STL) models with personal data. Nevertheless, the paradigm has recently shifted towards multi-task data and multi-task learning (MTL), targeting generalist and foundation models that can handle multiple tasks simultaneously. Despite their growing importance, MTL data and models have been largely neglected while pursuing unlearnable strategies. This paper presents MTL-UE, the first unified framework for generating unlearnable examples for multi-task data and MTL models. Instead of optimizing perturbations for each sample, we design a generator-based structure that introduces label priors and class-wise feature embeddings which leads to much better attacking performance. In addition, MTL-UE incorporates intra-task and inter-task embedding regularization to increase inter-class separation and suppress intra-class variance which enhances the attack robustness greatly. Furthermore, MTL-UE is versatile with good supports for dense prediction tasks in MTL. It is also plug-and-play allowing integrating existing surrogate-dependent unlearnable methods with little adaptation. Extensive experiments show that MTL-UE achieves superior attacking performance consistently across 4 MTL datasets, 3 base UE methods, 5 model backbones, and 5 MTL task-weighting strategies.
Abstract:Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions. A critical aspect of these examples is their transferability, allowing them to deceive {unseen} models in black-box scenarios. Despite the widespread exploration of defense methods, including those on transferability, they show limitations: inefficient deployment, ineffective defense, and degraded performance on clean images. In this work, we introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way. We propose a model that exhibits random guessing behavior when presented with clean data $\boldsymbol{x}$ as input, and generates accurate predictions when with triggered data $\boldsymbol{x}+\boldsymbol{\tau}$. Importantly, the trigger $\boldsymbol{\tau}$ remains constant for all data instances. We refer to these models as \textbf{models with trigger activation}. We are surprised to find that these models exhibit certain robustness against TAEs. Through the consideration of first-order gradients, we provide a theoretical analysis of this robustness. Moreover, through the joint optimization of the learnable trigger and the model, we achieve improved robustness to transferable attacks. Extensive experiments conducted across diverse datasets, evaluating a variety of attacking methods, underscore the effectiveness and superiority of our approach.
Abstract:Given a natural language query, video moment retrieval aims to localize the described temporal moment in an untrimmed video. A major challenge of this task is its heavy dependence on labor-intensive annotations for training. Unlike existing works that directly train models on manually curated data, we propose a novel paradigm to reduce annotation costs: pretraining the model on unlabeled, real-world videos. To support this, we introduce Video Moment Retrieval Pretraining (Vid-Morp), a large-scale dataset collected with minimal human intervention, consisting of over 50K videos captured in the wild and 200K pseudo annotations. Direct pretraining on these imperfect pseudo annotations, however, presents significant challenges, including mismatched sentence-video pairs and imprecise temporal boundaries. To address these issues, we propose the ReCorrect algorithm, which comprises two main phases: semantics-guided refinement and memory-consensus correction. The semantics-guided refinement enhances the pseudo labels by leveraging semantic similarity with video frames to clean out unpaired data and make initial adjustments to temporal boundaries. In the following memory-consensus correction phase, a memory bank tracks the model predictions, progressively correcting the temporal boundaries based on consensus within the memory. Comprehensive experiments demonstrate ReCorrect's strong generalization abilities across multiple downstream settings. Zero-shot ReCorrect achieves over 75% and 80% of the best fully-supervised performance on two benchmarks, while unsupervised ReCorrect reaches about 85% on both. The code, dataset, and pretrained models are available at https://github.com/baopj/Vid-Morp.
Abstract:Recent advances in AI-powered image editing tools have significantly lowered the barrier to image modification, raising pressing security concerns those related to spreading misinformation and disinformation on social platforms. Image provenance analysis is crucial in this context, as it identifies relevant images within a database and constructs a relationship graph by mining hidden manipulation and transformation cues, thereby providing concrete evidence chains. This paper introduces a novel end-to-end deep learning framework designed to explore the structural information of provenance graphs. Our proposed method distinguishes from previous approaches in two main ways. First, unlike earlier methods that rely on prior knowledge and have limited generalizability, our framework relies upon a patch attention mechanism to capture image provenance clues for local manipulations and global transformations, thereby enhancing graph construction performance. Second, while previous methods primarily focus on identifying tampering traces only between image pairs, they often overlook the hidden information embedded in the topology of the provenance graph. Our approach aligns the model training objectives with the final graph construction task, incorporating the overall structural information of the graph into the training process. We integrate graph structure information with the attention mechanism, enabling precise determination of the direction of transformation. Experimental results show the superiority of the proposed method over previous approaches, underscoring its effectiveness in addressing the challenges of image provenance analysis.
Abstract:Open-set face forgery detection poses significant security threats and presents substantial challenges for existing detection models. These detectors primarily have two limitations: they cannot generalize across unknown forgery domains and inefficiently adapt to new data. To address these issues, we introduce an approach that is both general and parameter-efficient for face forgery detection. It builds on the assumption that different forgery source domains exhibit distinct style statistics. Previous methods typically require fully fine-tuning pre-trained networks, consuming substantial time and computational resources. In turn, we design a forgery-style mixture formulation that augments the diversity of forgery source domains, enhancing the model's generalizability across unseen domains. Drawing on recent advancements in vision transformers (ViT) for face forgery detection, we develop a parameter-efficient ViT-based detection model that includes lightweight forgery feature extraction modules and enables the model to extract global and local forgery clues simultaneously. We only optimize the inserted lightweight modules during training, maintaining the original ViT structure with its pre-trained ImageNet weights. This training strategy effectively preserves the informative pre-trained knowledge while flexibly adapting the model to the task of Deepfake detection. Extensive experimental results demonstrate that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters, representing an important step toward open-set Deepfake detection in the wild.
Abstract:Large Language Models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities from few-shot demonstration exemplars. While recent learning-based demonstration selection methods have proven beneficial to ICL by choosing more useful exemplars, their underlying mechanisms are opaque, hindering efforts to address limitations such as high training costs and poor generalization across tasks. These methods generally assume the selection process captures similarities between the exemplar and the target instance, however, it remains unknown what kinds of similarities are captured and vital to performing ICL. To dive into this question, we analyze the working mechanisms of the learning-based demonstration selection methods and empirically identify two important factors related to similarity measurement: 1) The ability to integrate different levels of task-agnostic text similarities between the input of exemplars and test cases enhances generalization power across different tasks. 2) Incorporating task-specific labels when measuring the similarities significantly improves the performance on each specific task. We validate these two findings through extensive quantitative and qualitative analyses across ten datasets and various LLMs. Based on our findings, we introduce two effective yet simplified exemplar selection methods catering to task-agnostic and task-specific demands, eliminating the costly LLM inference overhead.
Abstract:Deepfakes have recently raised significant trust issues and security concerns among the public. Compared to CNN face forgery detectors, ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance. However, these approaches still exhibit the following limitations: (1). Fully fine-tuning ViT-based models from ImageNet weights demands substantial computational and storage resources; (2). ViT-based methods struggle to capture local forgery clues, leading to model bias and limited generalizability. To tackle these challenges, this work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach. MoE-FFD only updates lightweight Low-Rank Adaptation (LoRA) and Adapter layers while keeping the ViT backbone frozen, thereby achieving parameter-efficient training. Moreover, MoE-FFD leverages the expressivity of transformers and local priors of CNNs to simultaneously extract global and local forgery clues. Additionally, novel MoE modules are designed to scale the model's capacity and select optimal forgery experts, further enhancing forgery detection performance. The proposed MoE learning scheme can be seamlessly adapted to various transformer backbones in a plug-and-play manner. Extensive experimental results demonstrate that the proposed method achieves state-of-the-art face forgery detection performance with reduced parameter overhead. The code will be released upon acceptance.
Abstract:Digital image forensics plays a crucial role in image authentication and manipulation localization. Despite the progress powered by deep neural networks, existing forgery localization methodologies exhibit limitations when deployed to unseen datasets and perturbed images (i.e., lack of generalization and robustness to real-world applications). To circumvent these problems and aid image integrity, this paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts. The rationale is grounded on the observation that most image signal processors (ISP) involve the demosaicing process, which introduces pixel correlations in pristine images. Moreover, manipulating operations, including splicing, copy-move, and inpainting, directly affect such pixel regularity. We, therefore, first split the input image into several blocks and design masked self-attention mechanisms to model the global pixel dependency in input images. Simultaneously, we optimize another local pixel dependency stream to mine local manipulation clues within input forgery images. In addition, we design novel Learning-to-Weight Modules (LWM) to combine features from the two streams, thereby enhancing the final forgery localization performance. To improve the training process, we propose a novel Pixel-Inconsistency Data Augmentation (PIDA) strategy, driving the model to focus on capturing inherent pixel-level artifacts instead of mining semantic forgery traces. This work establishes a comprehensive benchmark integrating 15 representative detection models across 12 datasets. Extensive experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints and achieve state-of-the-art generalization and robustness performances in image manipulation localization.