Abstract:This survey serves as a review for the 2025 Event-Based Eye Tracking Challenge organized as part of the 2025 CVPR event-based vision workshop. This challenge focuses on the task of predicting the pupil center by processing event camera recorded eye movement. We review and summarize the innovative methods from teams rank the top in the challenge to advance future event-based eye tracking research. In each method, accuracy, model size, and number of operations are reported. In this survey, we also discuss event-based eye tracking from the perspective of hardware design.
Abstract:Epileptic seizures cause abnormal brain activity, and their unpredictability can lead to accidents, underscoring the need for long-term seizure prediction. Although seizures can be predicted by analyzing electroencephalogram (EEG) signals, existing methods often require too many electrode channels or larger models, limiting mobile usability. This paper introduces a SlimSeiz framework that utilizes adaptive channel selection with a lightweight neural network model. SlimSeiz operates in two states: the first stage selects the optimal channel set for seizure prediction using machine learning algorithms, and the second stage employs a lightweight neural network based on convolution and Mamba for prediction. On the Children's Hospital Boston-MIT (CHB-MIT) EEG dataset, SlimSeiz can reduce channels from 22 to 8 while achieving a satisfactory result of 94.8% accuracy, 95.5% sensitivity, and 94.0% specificity with only 21.2K model parameters, matching or outperforming larger models' performance. We also validate SlimSeiz on a new EEG dataset, SRH-LEI, collected from Shanghai Renji Hospital, demonstrating its effectiveness across different patients. The code and SRH-LEI dataset are available at https://github.com/guoruilu/SlimSeiz.