Abstract:Evaluating relevance in large-scale search systems is fundamentally constrained by the governance gap between nuanced, resource-constrained human oversight and the high-throughput requirements of production systems. While traditional approaches rely on engagement proxies or sparse manual review, these methods often fail to capture the full scope of high-impact relevance failures. We present \textbf{SAGE} (Scalable AI Governance \& Evaluation), a framework that operationalizes high-quality human product judgment as a scalable evaluation signal. At the core of SAGE is a bidirectional calibration loop where natural-language \emph{Policy}, curated \emph{Precedent}, and an \emph{LLM Surrogate Judge} co-evolve. SAGE systematically resolves semantic ambiguities and misalignments, transforming subjective relevance judgment into an executable, multi-dimensional rubric with near human-level agreement. To bridge the gap between frontier model reasoning and industrial-scale inference, we apply teacher-student distillation to transfer high-fidelity judgments into compact student surrogates at \textbf{92$\times$} lower cost. Deployed within LinkedIn Search ecosystems, SAGE guided model iteration through simulation-driven development, distilling policy-aligned models for online serving and enabling rapid offline evaluation. In production, it powered policy oversight that measured ramped model variants and detected regressions invisible to engagement metrics. Collectively, these drove a \textbf{0.25\%} lift in LinkedIn daily active users.
Abstract:Semantic search with large language models (LLMs) enables retrieval by meaning rather than keyword overlap, but scaling it requires major inference efficiency advances. We present LinkedIn's LLM-based semantic search framework for AI Job Search and AI People Search, combining an LLM relevance judge, embedding-based retrieval, and a compact Small Language Model trained via multi-teacher distillation to jointly optimize relevance and engagement. A prefill-oriented inference architecture co-designed with model pruning, context compression, and text-embedding hybrid interactions boosts ranking throughput by over 75x under a fixed latency constraint while preserving near-teacher-level NDCG, enabling one of the first production LLM-based ranking systems with efficiency comparable to traditional approaches and delivering significant gains in quality and user engagement.
Abstract:Effective personalization on large-scale job platforms requires modeling members based on heterogeneous textual sources, including profiles, professional data, and search activity logs. As recommender systems increasingly adopt Large Language Models (LLMs), creating unified, interpretable, and concise representations from heterogeneous sources becomes critical, especially for latency-sensitive online environments. In this work, we propose a novel Reinforcement Learning (RL) framework to synthesize a unified textual representation for each member. Our approach leverages implicit user engagement signals (e.g., clicks, applies) as the primary reward to distill salient information. Additionally, the framework is complemented by rule-based rewards that enforce formatting and length constraints. Extensive offline experiments across multiple LinkedIn products, one of the world's largest job platforms, demonstrate significant improvements in key downstream business metrics. This work provides a practical, labeling-free, and scalable solution for constructing interpretable user representations that are directly compatible with LLM-based systems.
Abstract:We present a novel system for real-time tracking of facial expressions using egocentric views captured from a set of infrared cameras embedded in a virtual reality (VR) headset. Our technology facilitates any user to accurately drive the facial expressions of virtual characters in a non-intrusive manner and without the need of a lengthy calibration step. At the core of our system is a distillation based approach to train a machine learning model on heterogeneous data and labels coming form multiple sources, \eg synthetic and real images. As part of our dataset, we collected 18k diverse subjects using a lightweight capture setup consisting of a mobile phone and a custom VR headset with extra cameras. To process this data, we developed a robust differentiable rendering pipeline enabling us to automatically extract facial expression labels. Our system opens up new avenues for communication and expression in virtual environments, with applications in video conferencing, gaming, entertainment, and remote collaboration.
Abstract:Video Individual Counting (VIC) is a recently introduced task aiming to estimate pedestrian flux from a video. It extends Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that learns to count pedestrians across frames, VIC must identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, can underperform in congested scenes such as metro commuting. To address this, we build WuhanMetroCrowd, one of the first VIC datasets that characterize crowded, dynamic pedestrian flows. It features sparse-to-dense density levels, short-to-long video clips, slow-to-fast flow variations, front-to-back appearance changes, and light-to-heavy occlusions. To better adapt VIC approaches to crowds, we rethink the nature of VIC and recognize two informative priors: i) the social grouping prior that indicates pedestrians tend to gather in groups and ii) the spatial-temporal displacement prior that informs an individual cannot teleport physically. The former inspires us to relax the standard one-to-one (O2O) matching used by VIC to one-to-many (O2M) matching, implemented by an implicit context generator and a O2M matcher; the latter facilitates the design of a displacement prior injector, which strengthens not only O2M matching but also feature extraction and model training. These designs jointly form a novel and strong VIC baseline OMAN++. Extensive experiments show that OMAN++ not only outperforms state-of-the-art VIC baselines on the standard SenseCrowd, CroHD, and MovingDroneCrowd benchmarks, but also indicates a clear advantage in crowded scenes, with a 38.12% error reduction on our WuhanMetroCrowd dataset. Code, data, and pretrained models are available at https://github.com/tiny-smart/OMAN.
Abstract:In this paper, a novel covert semantic communication framework is investigated. Within this framework, a server extracts and transmits the semantic information, i.e., the meaning of image data, to a user over several time slots. An attacker seeks to detect and eavesdrop the semantic transmission to acquire details of the original image. To avoid data meaning being eavesdropped by an attacker, a friendly jammer is deployed to transmit jamming signals to interfere the attacker so as to hide the transmitted semantic information. Meanwhile, the server will strategically select time slots for semantic information transmission. Due to limited energy, the jammer will not communicate with the server and hence the server does not know the transmit power of the jammer. Therefore, the server must jointly optimize the semantic information transmitted at each time slot and the corresponding transmit power to maximize the privacy and the semantic information transmission quality of the user. To solve this problem, we propose a prioritised sampling assisted twin delayed deep deterministic policy gradient algorithm to jointly determine the transmitted semantic information and the transmit power per time slot without the communications between the server and the jammer. Compared to standard reinforcement learning methods, the propose method uses an additional Q network to estimate Q values such that the agent can select the action with a lower Q value from the two Q networks thus avoiding local optimal action selection and estimation bias of Q values. Simulation results show that the proposed algorithm can improve the privacy and the semantic information transmission quality by up to 77.8% and 14.3% compared to the traditional reinforcement learning methods.




Abstract:DeepSeek-R1, renowned for its exceptional reasoning capabilities and open-source strategy, is significantly influencing the global artificial intelligence landscape. However, it exhibits notable safety shortcomings. Recent research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 achieves a 100\% attack success rate when processing harmful prompts. Furthermore, multiple security firms and research institutions have identified critical security vulnerabilities within the model. Although China Unicom has uncovered safety vulnerabilities of R1 in Chinese contexts, the safety capabilities of the remaining distilled models in the R1 series have not yet been comprehensively evaluated. To address this gap, this study utilizes the comprehensive Chinese safety benchmark CHiSafetyBench to conduct an in-depth safety evaluation of the DeepSeek-R1 series distilled models. The objective is to assess the safety capabilities of these models in Chinese contexts both before and after distillation, and to further elucidate the adverse effects of distillation on model safety. Building on these findings, we implement targeted safety enhancements for six distilled models. Evaluation results indicate that the enhanced models achieve significant improvements in safety while maintaining reasoning capabilities without notable degradation. We open-source the safety-enhanced models at https://github.com/UnicomAI/DeepSeek-R1-Distill-Safe/tree/main to serve as a valuable resource for future research and optimization of DeepSeek models.
Abstract:Recent advancements in slow-thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking-generating redundant reasoning steps for simple problems, leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow-Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought(CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leveraging length-aware reward shaping and length preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems.
Abstract:Most existing semantic communication (SemCom) systems use deep joint source-channel coding (DeepJSCC) to encode task-specific semantics in a goal-oriented manner. However, their reliance on predefined tasks and datasets significantly limits their flexibility and generalizability in practical deployments. Multi-modal foundation models provide a promising solution by generating universal semantic tokens. Inspired by this, we introduce SemCLIP, a task-agnostic SemCom framework leveraging the contrastive language-image pre-training (CLIP) model. By transmitting CLIP-generated image tokens instead of raw images, SemCLIP enables efficient semantic communications under low bandwidth and challenging channel conditions, facilitating diverse downstream tasks and zero-shot applications. Specifically, we propose a DeepJSCC scheme for efficient CLIP tokens encoding. To mitigate potential degradation caused by compression and channel noise, a multi-modal transmission-aware prompt learning mechanism is designed at the receiver, which adapts prompts based on transmission quality, enhancing system robustness and channel adaptability. Simulation results demonstrate that SemCLIP outperforms the baselines, achieving a $41\%$ improvement in zero-shot accuracy at a low signal-to-noise ratio. Meanwhile, SemCLIP reduces bandwidth usage by more than $50$-fold compared to different image transmission methods, demonstrating the potential of foundation models towards a generalized, task-agnostic SemCom solution.




Abstract:The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.