Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...
Conversational recommendation systems (CRS) effectively address information asymmetry by dynamically eliciting user preferences through multi-turn interactions. Existing CRS widely assumes that users have clear preferences. Under this assumption, the agent will completely trust the user feedback and treat the accepted or rejected signals as strong indicators to filter items and reduce the candidate space, which may lead to the problem of over-filtering. However, in reality, users' preferences are often vague and volatile, with uncertainty about their desires and changing decisions during interactions. To address this issue, we introduce a novel scenario called Vague Preference Multi-round Conversational Recommendation (VPMCR), which considers users' vague and volatile preferences in CRS.VPMCR employs a soft estimation mechanism to assign a non-zero confidence score for all candidate items to be displayed, naturally avoiding the over-filtering problem. In the VPMCR setting, we introduce an solution called Adaptive Vague Preference Policy Learning (AVPPL), which consists of two main components: Uncertainty-aware Soft Estimation (USE) and Uncertainty-aware Policy Learning (UPL). USE estimates the uncertainty of users' vague feedback and captures their dynamic preferences using a choice-based preferences extraction module and a time-aware decaying strategy. UPL leverages the preference distribution estimated by USE to guide the conversation and adapt to changes in users' preferences to make recommendations or ask for attributes. Our extensive experiments demonstrate the effectiveness of our method in the VPMCR scenario, highlighting its potential for practical applications and improving the overall performance and applicability of CRS in real-world settings, particularly for users with vague or dynamic preferences.
Recently, personalized product search attracts great attention and many models have been proposed. To evaluate the effectiveness of these models, previous studies mainly utilize the simulated Amazon recommendation dataset, which contains automatically generated queries and excludes cold users and tail products. We argue that evaluating with such a dataset may yield unreliable results and conclusions, and deviate from real user satisfaction. To overcome these problems, in this paper, we release a personalized product search dataset comprised of real user queries and diverse user-product interaction types (clicking, adding to cart, following, and purchasing) collected from JD.com, a popular Chinese online shopping platform. More specifically, we sample about 170,000 active users on a specific date, then record all their interacted products and issued queries in one year, without removing any tail users and products. This finally results in roughly 12,000,000 products, 9,400,000 real searches, and 26,000,000 user-product interactions. We study the characteristics of this dataset from various perspectives and evaluate representative personalization models to verify its feasibility. The dataset can be publicly accessed at Github: https://github.com/rucliujn/JDsearch.
Query intent classification, which aims at assisting customers to find desired products, has become an essential component of the e-commerce search. Existing query intent classification models either design more exquisite models to enhance the representation learning of queries or explore label-graph and multi-task to facilitate models to learn external information. However, these models cannot capture multi-granularity matching features from queries and categories, which makes them hard to mitigate the gap in the expression between informal queries and categories. This paper proposes a Multi-granularity Matching Attention Network (MMAN), which contains three modules: a self-matching module, a char-level matching module, and a semantic-level matching module to comprehensively extract features from the query and a query-category interaction matrix. In this way, the model can eliminate the difference in expression between queries and categories for query intent classification. We conduct extensive offline and online A/B experiments, and the results show that the MMAN significantly outperforms the strong baselines, which shows the superiority and effectiveness of MMAN. MMAN has been deployed in production and brings great commercial value for our company.
Retrieving relevant items that match users' queries from billion-scale corpus forms the core of industrial e-commerce search systems, in which embedding-based retrieval (EBR) methods are prevailing. These methods adopt a two-tower framework to learn embedding vectors for query and item separately and thus leverage efficient approximate nearest neighbor (ANN) search to retrieve relevant items. However, existing EBR methods usually ignore inconsistent user behaviors in industrial multi-stage search systems, resulting in insufficient retrieval efficiency with a low commercial return. To tackle this challenge, we propose to improve EBR methods by learning Multi-level Multi-Grained Semantic Embeddings(MMSE). We propose the multi-stage information mining to exploit the ordered, clicked, unclicked and random sampled items in practical user behavior data, and then capture query-item similarity via a post-fusion strategy. We then propose multi-grained learning objectives that integrate the retrieval loss with global comparison ability and the ranking loss with local comparison ability to generate semantic embeddings. Both experiments on a real-world billion-scale dataset and online A/B tests verify the effectiveness of MMSE in achieving significant performance improvements on metrics such as offline recall and online conversion rate (CVR).
BERT-style models pre-trained on the general corpus (e.g., Wikipedia) and fine-tuned on specific task corpus, have recently emerged as breakthrough techniques in many NLP tasks: question answering, text classification, sequence labeling and so on. However, this technique may not always work, especially for two scenarios: a corpus that contains very different text from the general corpus Wikipedia, or a task that learns embedding spacial distribution for a specific purpose (e.g., approximate nearest neighbor search). In this paper, to tackle the above two scenarios that we have encountered in an industrial e-commerce search system, we propose customized and novel pre-training tasks for two critical modules: user intent detection and semantic embedding retrieval. The customized pre-trained models after fine-tuning, being less than 10% of BERT-base's size in order to be feasible for cost-efficient CPU serving, significantly improve the other baseline models: 1) no pre-training model and 2) fine-tuned model from the official pre-trained BERT using general corpus, on both offline datasets and online system. We have open sourced our datasets for the sake of reproducibility and future works.
Recent years have seen a significant amount of interests in Sequential Recommendation (SR), which aims to understand and model the sequential user behaviors and the interactions between users and items over time. Surprisingly, despite the huge success Sequential Recommendation has achieved, there is little study on Sequential Search (SS), a twin learning task that takes into account a user's current and past search queries, in addition to behavior on historical query sessions. The SS learning task is even more important than the counterpart SR task for most of E-commence companies due to its much larger online serving demands as well as traffic volume. To this end, we propose a highly scalable hybrid learning model that consists of an RNN learning framework leveraging all features in short-term user-item interactions, and an attention model utilizing selected item-only features from long-term interactions. As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly. Moreover, we explore the use of off-policy reinforcement learning in multi-session personalized search ranking. Specifically, we design a pairwise Deep Deterministic Policy Gradient model that efficiently captures users' long term reward in terms of pairwise classification error. Extensive ablation experiments demonstrate significant improvement each component brings to its state-of-the-art baseline, on a variety of offline and online metrics.
Graph convolution networks (GCN), which recently becomes new state-of-the-art method for graph node classification, recommendation and other applications, has not been successfully applied to industrial-scale search engine yet. In this proposal, we introduce our approach, namely SearchGCN, for embedding-based candidate retrieval in one of the largest e-commerce search engine in the world. Empirical studies demonstrate that SearchGCN learns better embedding representations than existing methods, especially for long tail queries and items. Thus, SearchGCN has been deployed into JD.com's search production since July 2020.
Embedding index that enables fast approximate nearest neighbor(ANN) search, serves as an indispensable component for state-of-the-art deep retrieval systems. Traditional approaches, often separating the two steps of embedding learning and index building, incur additional indexing time and decayed retrieval accuracy. In this paper, we propose a novel method called Poeem, which stands for product quantization based embedding index jointly trained with deep retrieval model, to unify the two separate steps within an end-to-end training, by utilizing a few techniques including the gradient straight-through estimator, warm start strategy, optimal space decomposition and Givens rotation. Extensive experimental results show that the proposed method not only improves retrieval accuracy significantly but also reduces the indexing time to almost none. We have open sourced our approach for the sake of comparison and reproducibility.