Abstract:OBJECTIVES: Quantitative MRI techniques such as T2 and T1$\rho$ mapping are beneficial in evaluating cartilage and meniscus. We aimed to evaluate the MIXTURE (Multi-Interleaved X-prepared Turbo-Spin Echo with IntUitive RElaxometry) sequences that provide morphologic images with clinical turbo spin-echo (TSE) contrasts and additional parameter maps versus reference TSE sequences in an in-situ model of human cartilage defects. MATERIALS AND METHODS: Prospectively, standardized cartilage defects of 8mm, 5mm, and 3mm diameter were created in the lateral femora of 10 human cadaveric knee specimens (81$\pm$10 years, nine male/one female). Using a clinical 3T MRI scanner and knee coil, MIXTURE sequences combining (i) proton-density weighted fat-saturated (PD-w FS) images and T2 maps and (ii) T1-weighted images and T1$\rho$ maps were acquired before and after defect creation, alongside the corresponding 2D TSE and 3D TSE reference sequences. Defect delineability, bone texture, and cartilage relaxation times were quantified. Inter-sequence comparisons were made using appropriate parametric and non-parametric tests. RESULTS: Overall, defect delineability and texture features were not significantly different between the MIXTURE and reference sequences. After defect creation, relaxation times increased significantly in the central femur (for T2) and all regions combined (for T1$\rho$). CONCLUSION: MIXTURE sequences permit time-efficient simultaneous morphologic and quantitative joint assessment based on clinical image contrasts. While providing T2 or T1$\rho$ maps in clinically feasible scan time, morphologic image features, i.e., cartilage defect delineability and bone texture, were comparable between MIXTURE and corresponding reference sequences.
Abstract:Semi-structured data, such as Infobox tables, often include temporal information about entities, either implicitly or explicitly. Can current NLP systems reason about such information in semi-structured tables? To tackle this question, we introduce the task of temporal question answering on semi-structured tables. We present a dataset, TempTabQA, which comprises 11,454 question-answer pairs extracted from 1,208 Wikipedia Infobox tables spanning more than 90 distinct domains. Using this dataset, we evaluate several state-of-the-art models for temporal reasoning. We observe that even the top-performing LLMs lag behind human performance by more than 13.5 F1 points. Given these results, our dataset has the potential to serve as a challenging benchmark to improve the temporal reasoning capabilities of NLP models.
Abstract:The extrapolation capability of Large Language Models (LLMs) based on Rotary Position Embedding is currently a topic of considerable interest. The mainstream approach to addressing extrapolation with LLMs involves modifying RoPE by replacing 10000, the rotary base of $\theta_n={10000}^{-2n/d}$ in the original RoPE, with a larger value and providing longer fine-tuning text. In this work, we first observe that fine-tuning a RoPE-based LLM with either a smaller or larger base in pre-training context length could significantly enhance its extrapolation performance. After that, we propose \textbf{\textit{Scaling Laws of RoPE-based Extrapolation}}, a unified framework from the periodic perspective, to describe the relationship between the extrapolation performance and base value as well as tuning context length. In this process, we also explain the origin of the RoPE-based extrapolation issue by \textbf{\textit{critical dimension for extrapolation}}. Besides these observations and analyses, we achieve extrapolation up to 1 million context length within only 16K training length on LLaMA2 7B and 13B.
Abstract:Evaluating open-domain dialogue systems is challenging for reasons such as the one-to-many problem, i.e., many appropriate responses other than just the golden response. As of now, automatic evaluation methods need better consistency with humans, while reliable human evaluation can be time- and cost-intensive. To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem. Specifically, RADE explicitly compares reference and the candidate response to predict their overall scores. Moreover, an auxiliary response generation task enhances prediction via a shared encoder. To support RADE, we extend three datasets with additional rated responses other than just a golden response by human annotation. Experiments on our three datasets and two existing benchmarks demonstrate the effectiveness of our method, where Pearson, Spearman, and Kendall correlations with human evaluation outperform state-of-the-art baselines.
Abstract:Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns. An intriguing property of adversarial examples is their strong transferability. Several methods have been proposed to enhance transferability, including ensemble attacks which have demonstrated their efficacy. However, prior approaches simply average logits, probabilities, or losses for model ensembling, lacking a comprehensive analysis of how and why model ensembling significantly improves transferability. In this paper, we propose a similar targeted attack method named Similar Target~(ST). By promoting cosine similarity between the gradients of each model, our method regularizes the optimization direction to simultaneously attack all surrogate models. This strategy has been proven to enhance generalization ability. Experimental results on ImageNet validate the effectiveness of our approach in improving adversarial transferability. Our method outperforms state-of-the-art attackers on 18 discriminative classifiers and adversarially trained models.
Abstract:Recent studies have shown that dense retrieval models, lacking dedicated training data, struggle to perform well across diverse retrieval tasks, as different retrieval tasks often entail distinct search intents. To address this challenge, in this work we introduce ControlRetriever, a generic and efficient approach with a parameter isolated architecture, capable of controlling dense retrieval models to directly perform varied retrieval tasks, harnessing the power of instructions that explicitly describe retrieval intents in natural language. Leveraging the foundation of ControlNet, which has proven powerful in text-to-image generation, ControlRetriever imbues different retrieval models with the new capacity of controllable retrieval, all while being guided by task-specific instructions. Furthermore, we propose a novel LLM guided Instruction Synthesizing and Iterative Training strategy, which iteratively tunes ControlRetriever based on extensive automatically-generated retrieval data with diverse instructions by capitalizing the advancement of large language models. Extensive experiments show that in the BEIR benchmark, with only natural language descriptions of specific retrieval intent for each task, ControlRetriever, as a unified multi-task retrieval system without task-specific tuning, significantly outperforms baseline methods designed with task-specific retrievers and also achieves state-of-the-art zero-shot performance.
Abstract:To learn accurate representations of molecules, it is essential to consider both chemical and geometric features. To encode geometric information, many descriptors have been proposed in constrained circumstances for specific types of molecules and do not have the properties to be ``robust": 1. Invariant to rotations and translations; 2. Injective when embedding molecular structures. In this work, we propose a universal and robust Directional Node Pair (DNP) descriptor based on the graph representations of 3D molecules. Our DNP descriptor is robust compared to previous ones and can be applied to multiple molecular types. To combine the DNP descriptor and chemical features in molecules, we construct the Robust Molecular Graph Convolutional Network (RoM-GCN) which is capable to take both node and edge features into consideration when generating molecule representations. We evaluate our model on protein and small molecule datasets. Our results validate the superiority of the DNP descriptor in incorporating 3D geometric information of molecules. RoM-GCN outperforms all compared baselines.
Abstract:Information Synchronization of semi-structured data across languages is challenging. For instance, Wikipedia tables in one language should be synchronized across languages. To address this problem, we introduce a new dataset InfoSyncC and a two-step method for tabular synchronization. InfoSync contains 100K entity-centric tables (Wikipedia Infoboxes) across 14 languages, of which a subset (3.5K pairs) are manually annotated. The proposed method includes 1) Information Alignment to map rows and 2) Information Update for updating missing/outdated information for aligned tables across multilingual tables. When evaluated on InfoSync, information alignment achieves an F1 score of 87.91 (en <-> non-en). To evaluate information updation, we perform human-assisted Wikipedia edits on Infoboxes for 603 table pairs. Our approach obtains an acceptance rate of 77.28% on Wikipedia, showing the effectiveness of the proposed method.
Abstract:Explanations in conventional recommender systems have demonstrated benefits in helping the user understand the rationality of the recommendations and improving the system's efficiency, transparency, and trustworthiness. In the conversational environment, multiple contextualized explanations need to be generated, which poses further challenges for explanations. To better measure explainability in conversational recommender systems (CRS), we propose ten evaluation perspectives based on concepts from conventional recommender systems together with the characteristics of CRS. We assess five existing CRS benchmark datasets using these metrics and observe the necessity of improving the explanation quality of CRS. To achieve this, we conduct manual and automatic approaches to extend these dialogues and construct a new CRS dataset, namely Explainable Recommendation Dialogues (E-ReDial). It includes 756 dialogues with over 2,000 high-quality rewritten explanations. We compare two baseline approaches to perform explanation generation based on E-ReDial. Experimental results suggest that models trained on E-ReDial can significantly improve explainability while introducing knowledge into the models can further improve the performance. GPT-3 in the in-context learning setting can generate more realistic and diverse movie descriptions. In contrast, T5 training on E-ReDial can better generate clear reasons for recommendations based on user preferences. E-ReDial is available at https://github.com/Superbooming/E-ReDial.
Abstract:Recent years have seen increasing concerns about the unsafe response generation of large-scale dialogue systems, where agents will learn offensive or biased behaviors from the real-world corpus. Some methods are proposed to address the above issue by detecting and replacing unsafe training examples in a pipeline style. Though effective, they suffer from a high annotation cost and adapt poorly to unseen scenarios as well as adversarial attacks. Besides, the neglect of providing safe responses (e.g. simply replacing with templates) will cause the information-missing problem of dialogues. To address these issues, we propose an unsupervised pseudo-label sampling method, TEMP, that can automatically assign potential safe responses. Specifically, our TEMP method groups responses into several clusters and samples multiple labels with an adaptively sharpened sampling strategy, inspired by the observation that unsafe samples in the clusters are usually few and distribute in the tail. Extensive experiments in chitchat and task-oriented dialogues show that our TEMP outperforms state-of-the-art models with weak supervision signals and obtains comparable results under unsupervised learning settings.