Abstract:Automatic target sound extraction (TSE) is a machine learning approach to mimic the human auditory perception capability of attending to a sound source of interest from a mixture of sources. It often uses a model conditioned on a fixed form of target sound clues, such as a sound class label, which limits the ways in which users can interact with the model to specify the target sounds. To leverage variable number of clues cross modalities available in the inference phase, including a video, a sound event class, and a text caption, we propose a unified transformer-based TSE model architecture, where a multi-clue attention module integrates all the clues across the modalities. Since there is no off-the-shelf benchmark to evaluate our proposed approach, we build a dataset based on public corpora, Audioset and AudioCaps. Experimental results for seen and unseen target-sound evaluation sets show that our proposed TSE model can effectively deal with a varying number of clues which improves the TSE performance and robustness against partially compromised clues.
Abstract:We propose a cross-lingual neural codec language model, VALL-E X, for cross-lingual speech synthesis. Specifically, we extend VALL-E and train a multi-lingual conditional codec language model to predict the acoustic token sequences of the target language speech by using both the source language speech and the target language text as prompts. VALL-E X inherits strong in-context learning capabilities and can be applied for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translation tasks. Experimental results show that it can generate high-quality speech in the target language via just one speech utterance in the source language as a prompt while preserving the unseen speaker's voice, emotion, and acoustic environment. Moreover, VALL-E X effectively alleviates the foreign accent problems, which can be controlled by a language ID. Audio samples are available at \url{https://aka.ms/vallex}.
Abstract:We propose gated language experts to improve multilingual transformer transducer models without any language identification (LID) input from users during inference. We define gating mechanism and LID loss to let transformer encoders learn language-dependent information, construct the multilingual transformer block with gated transformer experts and shared transformer layers for compact models, and apply linear experts on joint network output to better regularize speech acoustic and token label joint information. Furthermore, a curriculum training scheme is proposed to let LID guide the gated language experts for better serving their corresponding languages. Evaluated on the English and Spanish bilingual task, our methods achieve average 12.5% and 7.3% relative word error reductions over the baseline bilingual model and monolingual models, respectively, obtaining similar results to the upper bound model trained and inferred with oracle LID. We further explore our method on trilingual, quadrilingual, and pentalingual models, and observe similar advantages as in the bilingual models, which demonstrates the easy extension to more languages.
Abstract:We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called Vall-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. Vall-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that Vall-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find Vall-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis. See https://aka.ms/valle for demos of our work.
Abstract:The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
Abstract:Although speech is a simple and effective way for humans to communicate with the outside world, a more realistic speech interaction contains multimodal information, e.g., vision, text. How to design a unified framework to integrate different modal information and leverage different resources (e.g., visual-audio pairs, audio-text pairs, unlabeled speech, and unlabeled text) to facilitate speech representation learning was not well explored. In this paper, we propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model). The proposed VATLM employs a unified backbone network to model the modality-independent information and utilizes three simple modality-dependent modules to preprocess visual, speech, and text inputs. In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens, given by our proposed unified tokenizer. We evaluate the pre-trained VATLM on audio-visual related downstream tasks, including audio-visual speech recognition (AVSR), visual speech recognition (VSR) tasks. Results show that the proposed VATLM outperforms previous the state-of-the-art models, such as audio-visual pre-trained AV-HuBERT model, and analysis also demonstrates that VATLM is capable of aligning different modalities into the same space. To facilitate future research, we release the code and pre-trained models at https://aka.ms/vatlm.
Abstract:There is a surge in interest in self-supervised learning approaches for end-to-end speech encoding in recent years as they have achieved great success. Especially, WavLM showed state-of-the-art performance on various speech processing tasks. To better understand the efficacy of self-supervised learning models for speech enhancement, in this work, we design and conduct a series of experiments with three resource conditions by combining WavLM and two high-quality speech enhancement systems. Also, we propose a regression-based WavLM training objective and a noise-mixing data configuration to further boost the downstream enhancement performance. The experiments on the DNS challenge dataset and a simulation dataset show that the WavLM benefits the speech enhancement task in terms of both speech quality and speech recognition accuracy, especially for low fine-tuning resources. For the high fine-tuning resource condition, only the word error rate is substantially improved.
Abstract:Traditional automatic speech recognition~(ASR) systems usually focus on individual utterances, without considering long-form speech with useful historical information, which is more practical in real scenarios. Simply attending longer transcription history for a vanilla neural transducer model shows no much gain in our preliminary experiments, since the prediction network is not a pure language model. This motivates us to leverage the factorized neural transducer structure, containing a real language model, the vocabulary predictor. We propose the {LongFNT-Text} architecture, which fuses the sentence-level long-form features directly with the output of the vocabulary predictor and then embeds token-level long-form features inside the vocabulary predictor, with a pre-trained contextual encoder RoBERTa to further boost the performance. Moreover, we propose the {LongFNT} architecture by extending the long-form speech to the original speech input and achieve the best performance. The effectiveness of our LongFNT approach is validated on LibriSpeech and GigaSpeech corpora with 19% and 12% relative word error rate~(WER) reduction, respectively.
Abstract:End-to-end formulation of automatic speech recognition (ASR) and speech translation (ST) makes it easy to use a single model for both multilingual ASR and many-to-many ST. In this paper, we propose streaming language-agnostic multilingual speech recognition and translation using neural transducers (LAMASSU). To enable multilingual text generation in LAMASSU, we conduct a systematic comparison between specified and unified prediction and joint networks. We leverage a language-agnostic multilingual encoder that substantially outperforms shared encoders. To enhance LAMASSU, we propose to feed target LID to encoders. We also apply connectionist temporal classification regularization to transducer training. Experimental results show that LAMASSU not only drastically reduces the model size but also outperforms monolingual ASR and bilingual ST models.
Abstract:Sign languages are visual languages using manual articulations and non-manual elements to convey information. For sign language recognition and translation, the majority of existing approaches directly encode RGB videos into hidden representations. RGB videos, however, are raw signals with substantial visual redundancy, leading the encoder to overlook the key information for sign language understanding. To mitigate this problem and better incorporate domain knowledge, such as handshape and body movement, we introduce a dual visual encoder containing two separate streams to model both the raw videos and the keypoint sequences generated by an off-the-shelf keypoint estimator. To make the two streams interact with each other, we explore a variety of techniques, including bidirectional lateral connection, sign pyramid network with auxiliary supervision, and frame-level self-distillation. The resulting model is called TwoStream-SLR, which is competent for sign language recognition (SLR). TwoStream-SLR is extended to a sign language translation (SLT) model, TwoStream-SLT, by simply attaching an extra translation network. Experimentally, our TwoStream-SLR and TwoStream-SLT achieve state-of-the-art performance on SLR and SLT tasks across a series of datasets including Phoenix-2014, Phoenix-2014T, and CSL-Daily.