Abstract:Owing to the unprecedented capability in semantic understanding and logical reasoning, the pre-trained large language models (LLMs) have shown fantastic potential in developing the next-generation recommender systems (RSs). However, the static index paradigm adopted by current methods greatly restricts the utilization of LLMs capacity for recommendation, leading to not only the insufficient alignment between semantic and collaborative knowledge, but also the neglect of high-order user-item interaction patterns. In this paper, we propose Twin-Tower Dynamic Semantic Recommender (TTDS), the first generative RS which adopts dynamic semantic index paradigm, targeting at resolving the above problems simultaneously. To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender, hierarchically allocating meaningful semantic index for items and users, and accordingly predicting the semantic index of target item. Furthermore, a dual-modality variational auto-encoder is proposed to facilitate multi-grained alignment between semantic and collaborative knowledge. Eventually, a series of novel tuning tasks specially customized for capturing high-order user-item interaction patterns are proposed to take advantages of user historical behavior. Extensive experiments across three public datasets demonstrate the superiority of the proposed methodology in developing LLM-based generative RSs. The proposed TTDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
Abstract:The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift, offering novel methodologies for understanding disease mechanisms, facilitating drug discovery, and optimizing clinical trial processes. This review highlights the expanding role of LLMs in revolutionizing various stages of the drug development pipeline. We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes. Our paper aims to provide a comprehensive overview for researchers and practitioners in computational biology, pharmacology, and AI4Science by offering insights into the potential transformative impact of LLMs on drug discovery and development.
Abstract:Multiple-choice question answering (MCQA) becomes particularly challenging when all choices are relevant to the question and are semantically similar. Yet this setting of MCQA can potentially provide valuable clues for choosing the right answer. Existing models often rank each choice separately, overlooking the context provided by other choices. Specifically, they fail to leverage the semantic commonalities and nuances among the choices for reasoning. In this paper, we propose a novel MCQA model by differentiating choices through identifying and eliminating their commonality, called DCQA. Our model captures token-level attention of each choice to the question, and separates tokens of the question attended to by all the choices (i.e., commonalities) from those by individual choices (i.e., nuances). Using the nuances as refined contexts for the choices, our model can effectively differentiate choices with subtle differences and provide justifications for choosing the correct answer. We conduct comprehensive experiments across five commonly used MCQA benchmarks, demonstrating that DCQA consistently outperforms baseline models. Furthermore, our case study illustrates the effectiveness of the approach in directing the attention of the model to more differentiating features.
Abstract:Dynamic graph learning aims to uncover evolutionary laws in real-world systems, enabling accurate social recommendation (link prediction) or early detection of cancer cells (classification). Inspired by the success of state space models, e.g., Mamba, for efficiently capturing long-term dependencies in language modeling, we propose DyG-Mamba, a new continuous state space model (SSM) for dynamic graph learning. Specifically, we first found that using inputs as control signals for SSM is not suitable for continuous-time dynamic network data with irregular sampling intervals, resulting in models being insensitive to time information and lacking generalization properties. Drawing inspiration from the Ebbinghaus forgetting curve, which suggests that memory of past events is strongly correlated with time intervals rather than specific details of the events themselves, we directly utilize irregular time spans as control signals for SSM to achieve significant robustness and generalization. Through exhaustive experiments on 12 datasets for dynamic link prediction and dynamic node classification tasks, we found that DyG-Mamba achieves state-of-the-art performance on most of the datasets, while also demonstrating significantly improved computation and memory efficiency.
Abstract:Knowledge graphs (KGs) store enormous facts as relationships between entities. Due to the long-tailed distribution of relations and the incompleteness of KGs, there is growing interest in few-shot knowledge graph completion (FKGC). Existing FKGC methods often assume the existence of all entities in KGs, which may not be practical since new relations and entities can emerge over time. Therefore, we focus on a more challenging task called inductive few-shot knowledge graph completion (I-FKGC), where both relations and entities during the test phase are unknown before. Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem. Specifically, we propose a novel Graph Stochastic Neural Process approach (GS-NP), which consists of two major modules. In the first module, to obtain a generalized hypothesis (e.g., shared subgraph), we present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions. In the second module, based on the hypothesis, we propose a graph stochastic attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis. Meanwhile, the predictor can generate an explanatory subgraph identified by the hypothesis. Finally, the training of these two modules is seamlessly combined into a unified objective function, of which the effectiveness is verified by theoretical analyses as well as empirical studies. Extensive experiments on three public datasets demonstrate that our method outperforms existing methods and derives new state-of-the-art performance.
Abstract:Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs), has received increasing attention owing to its efficacy in handling graph-structured data. However, existing UGRL methods ideally assume that the node features are noise-free, which makes them fail to distinguish between useful information and noise when applied to real data with noisy features, thus affecting the quality of learned representations. This urges us to take node noisy features into account in real-world UGRL. With empirical analysis, we reveal that feature propagation, the essential operation in GNNs, acts as a "double-edged sword" in handling noisy features - it can both denoise and diffuse noise, leading to varying feature quality across nodes, even within the same node at different hops. Building on this insight, we propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE for short). Unlike most UGRL models that directly utilize propagation-based GNNs to generate representations, our approach aims to learn representations through estimating the quality of propagated features at different hops. Specifically, we introduce a Gaussian model that utilizes a learnable "meta-representation" as a condition to estimate the expectation and variance of multi-hop propagated features via neural networks. In this way, the "meta representation" captures the semantic and structural information underlying multiple propagated features but is naturally less susceptible to interference by noise, thereby serving as high-quality node representations beneficial for downstream tasks. Extensive experiments on multiple real-world datasets demonstrate that MQE in learning reliable node representations in scenarios with diverse types of feature noise.
Abstract:Recommender systems are pivotal in enhancing user experiences across various web applications by analyzing the complicated relationships between users and items. Knowledge graphs(KGs) have been widely used to enhance the performance of recommender systems. However, KGs are known to be noisy and incomplete, which are hard to provide reliable explanations for recommendation results. An explainable recommender system is crucial for the product development and subsequent decision-making. To address these challenges, we introduce a novel recommender that synergies Large Language Models (LLMs) and KGs to enhance the recommendation and provide interpretable results. Specifically, we first harness the power of LLMs to augment KG reconstruction. LLMs comprehend and decompose user reviews into new triples that are added into KG. In this way, we can enrich KGs with explainable paths that express user preferences. To enhance the recommendation on augmented KGs, we introduce a novel subgraph reasoning module that effectively measures the importance of nodes and discovers reasoning for recommendation. Finally, these reasoning paths are fed into the LLMs to generate interpretable explanations of the recommendation results. Our approach significantly enhances both the effectiveness and interpretability of recommender systems, especially in cross-selling scenarios where traditional methods falter. The effectiveness of our approach has been rigorously tested on four open real-world datasets, with our methods demonstrating a superior performance over contemporary state-of-the-art techniques by an average improvement of 12%. The application of our model in a multinational engineering and technology company cross-selling recommendation system further underscores its practical utility and potential to redefine recommendation practices through improved accuracy and user trust.
Abstract:To build safe and reliable graph machine learning systems, unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection (GLOD) have received significant attention in recent years. Though those two lines of research indeed share the same objective, they have been studied independently in the community due to distinct evaluation setups, creating a gap that hinders the application and evaluation of methods from one to the other. To bridge the gap, in this work, we present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method), a comprehensive evaluation framework that unifies GLAD and GLOD under the concept of generalized graph-level OOD detection. Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios, facilitating the comparison of 16 representative GLAD/GLOD methods. We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods, shedding light on their strengths and limitations. Furthermore, we provide an open-source codebase (https://github.com/UB-GOLD/UB-GOLD) of our method to foster reproducible research and outline potential directions for future investigations based on our insights.
Abstract:Graph Neural Networks (GNNs) have become pivotal tools for a range of graph-based learning tasks. Notably, most current GNN architectures operate under the assumption of homophily, whether explicitly or implicitly. While this underlying assumption is frequently adopted, it is not universally applicable, which can result in potential shortcomings in learning effectiveness. In this paper, \textbf{for the first time}, we transfer the prevailing concept of ``one node one receptive field" to the heterophilic graph. By constructing a proxy label predictor, we enable each node to possess a latent prediction distribution, which assists connected nodes in determining whether they should aggregate their associated neighbors. Ultimately, every node can have its own unique aggregation hop and pattern, much like each snowflake is unique and possesses its own characteristics. Based on observations, we innovatively introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs and beyond. We conduct comprehensive experiments including (1) main results on 10 graphs with varying heterophily ratios across 10 backbones; (2) scalability on various deep GNN backbones (SGC, JKNet, etc.) across various large number of layers (2,4,6,8,16,32 layers); (3) comparison with conventional snowflake hypothesis; (4) efficiency comparison with existing graph pruning algorithms. Our observations show that our framework acts as a versatile operator for diverse tasks. It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth. The source code is available at \url{https://github.com/bingreeky/HeteroSnoH}.
Abstract:In recent years, there has been notable interest in investigating combinatorial optimization (CO) problems by neural-based framework. An emerging strategy to tackle these challenging problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms, a subject that has attracted considerable attention. Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework. The primary focus of our work is to formulate a more efficient and precise framework for CO by employing decision-focused learning on graphs. Additionally, we introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support. To realize an end-to-end approach, we have designed two cascaded modules: (a) an unsupervised trained graph predictive model, and (b) a solver for quadratic binary unconstrained optimization. Empirical evaluations are conducted on various classical tasks, including maximum cut, maximum independent set, and minimum vertex cover. The experimental results on classical CO problems (i.e. MaxCut, MIS, and MVC) demonstrate the superiority of our method over both the standalone GNN approach and classical methods.