Abstract:Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
Abstract:Large language models (LLMs) have demonstrated impressive reasoning abilities, but they still struggle with faithful reasoning due to knowledge gaps and hallucinations. To address these issues, knowledge graphs (KGs) have been utilized to enhance LLM reasoning through their structured knowledge. However, existing KG-enhanced methods, either retrieval-based or agent-based, encounter difficulties in accurately retrieving knowledge and efficiently traversing KGs at scale. In this work, we introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs. To eliminate hallucinations, GCR ensures faithful KG-grounded reasoning by integrating KG structure into the LLM decoding process through KG-Trie, a trie-based index that encodes KG reasoning paths. KG-Trie constrains the decoding process, allowing LLMs to directly reason on graphs and generate faithful reasoning paths grounded in KGs. Additionally, GCR leverages a lightweight KG-specialized LLM for graph-constrained reasoning alongside a powerful general LLM for inductive reasoning over multiple reasoning paths, resulting in accurate reasoning with zero reasoning hallucination. Extensive experiments on several KGQA benchmarks demonstrate that GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
Abstract:Accurate bicycling volume estimation is crucial for making informed decisions about future investments in bicycling infrastructure. Traditional link-level volume estimation models are effective for motorised traffic but face significant challenges when applied to the bicycling context because of sparse data and the intricate nature of bicycling mobility patterns. To the best of our knowledge, we present the first study to utilize a Graph Convolutional Network (GCN) architecture to model link-level bicycling volumes. We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data. To evaluate the effectiveness of the GCN model, we benchmark it against traditional machine learning models, such as linear regression, support vector machines, and random forest. Our results show that the GCN model performs better than these traditional models in predicting AADB counts, demonstrating its ability to capture the spatial dependencies inherent in bicycle traffic data. We further investigate how varying levels of data sparsity affect performance of the GCN architecture. The GCN architecture performs well and better up to 80% sparsity level, but its limitations become apparent as the data sparsity increases further, emphasizing the need for further research on handling extreme data sparsity in bicycling volume estimation. Our findings offer valuable insights for city planners aiming to improve bicycling infrastructure and promote sustainable transportation.
Abstract:Owing to the unprecedented capability in semantic understanding and logical reasoning, the pre-trained large language models (LLMs) have shown fantastic potential in developing the next-generation recommender systems (RSs). However, the static index paradigm adopted by current methods greatly restricts the utilization of LLMs capacity for recommendation, leading to not only the insufficient alignment between semantic and collaborative knowledge, but also the neglect of high-order user-item interaction patterns. In this paper, we propose Twin-Tower Dynamic Semantic Recommender (TTDS), the first generative RS which adopts dynamic semantic index paradigm, targeting at resolving the above problems simultaneously. To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender, hierarchically allocating meaningful semantic index for items and users, and accordingly predicting the semantic index of target item. Furthermore, a dual-modality variational auto-encoder is proposed to facilitate multi-grained alignment between semantic and collaborative knowledge. Eventually, a series of novel tuning tasks specially customized for capturing high-order user-item interaction patterns are proposed to take advantages of user historical behavior. Extensive experiments across three public datasets demonstrate the superiority of the proposed methodology in developing LLM-based generative RSs. The proposed TTDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
Abstract:The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift, offering novel methodologies for understanding disease mechanisms, facilitating drug discovery, and optimizing clinical trial processes. This review highlights the expanding role of LLMs in revolutionizing various stages of the drug development pipeline. We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes. Our paper aims to provide a comprehensive overview for researchers and practitioners in computational biology, pharmacology, and AI4Science by offering insights into the potential transformative impact of LLMs on drug discovery and development.
Abstract:Multiple-choice question answering (MCQA) becomes particularly challenging when all choices are relevant to the question and are semantically similar. Yet this setting of MCQA can potentially provide valuable clues for choosing the right answer. Existing models often rank each choice separately, overlooking the context provided by other choices. Specifically, they fail to leverage the semantic commonalities and nuances among the choices for reasoning. In this paper, we propose a novel MCQA model by differentiating choices through identifying and eliminating their commonality, called DCQA. Our model captures token-level attention of each choice to the question, and separates tokens of the question attended to by all the choices (i.e., commonalities) from those by individual choices (i.e., nuances). Using the nuances as refined contexts for the choices, our model can effectively differentiate choices with subtle differences and provide justifications for choosing the correct answer. We conduct comprehensive experiments across five commonly used MCQA benchmarks, demonstrating that DCQA consistently outperforms baseline models. Furthermore, our case study illustrates the effectiveness of the approach in directing the attention of the model to more differentiating features.
Abstract:Dynamic graph learning aims to uncover evolutionary laws in real-world systems, enabling accurate social recommendation (link prediction) or early detection of cancer cells (classification). Inspired by the success of state space models, e.g., Mamba, for efficiently capturing long-term dependencies in language modeling, we propose DyG-Mamba, a new continuous state space model (SSM) for dynamic graph learning. Specifically, we first found that using inputs as control signals for SSM is not suitable for continuous-time dynamic network data with irregular sampling intervals, resulting in models being insensitive to time information and lacking generalization properties. Drawing inspiration from the Ebbinghaus forgetting curve, which suggests that memory of past events is strongly correlated with time intervals rather than specific details of the events themselves, we directly utilize irregular time spans as control signals for SSM to achieve significant robustness and generalization. Through exhaustive experiments on 12 datasets for dynamic link prediction and dynamic node classification tasks, we found that DyG-Mamba achieves state-of-the-art performance on most of the datasets, while also demonstrating significantly improved computation and memory efficiency.
Abstract:Knowledge graphs (KGs) store enormous facts as relationships between entities. Due to the long-tailed distribution of relations and the incompleteness of KGs, there is growing interest in few-shot knowledge graph completion (FKGC). Existing FKGC methods often assume the existence of all entities in KGs, which may not be practical since new relations and entities can emerge over time. Therefore, we focus on a more challenging task called inductive few-shot knowledge graph completion (I-FKGC), where both relations and entities during the test phase are unknown before. Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem. Specifically, we propose a novel Graph Stochastic Neural Process approach (GS-NP), which consists of two major modules. In the first module, to obtain a generalized hypothesis (e.g., shared subgraph), we present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions. In the second module, based on the hypothesis, we propose a graph stochastic attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis. Meanwhile, the predictor can generate an explanatory subgraph identified by the hypothesis. Finally, the training of these two modules is seamlessly combined into a unified objective function, of which the effectiveness is verified by theoretical analyses as well as empirical studies. Extensive experiments on three public datasets demonstrate that our method outperforms existing methods and derives new state-of-the-art performance.
Abstract:Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs), has received increasing attention owing to its efficacy in handling graph-structured data. However, existing UGRL methods ideally assume that the node features are noise-free, which makes them fail to distinguish between useful information and noise when applied to real data with noisy features, thus affecting the quality of learned representations. This urges us to take node noisy features into account in real-world UGRL. With empirical analysis, we reveal that feature propagation, the essential operation in GNNs, acts as a "double-edged sword" in handling noisy features - it can both denoise and diffuse noise, leading to varying feature quality across nodes, even within the same node at different hops. Building on this insight, we propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE for short). Unlike most UGRL models that directly utilize propagation-based GNNs to generate representations, our approach aims to learn representations through estimating the quality of propagated features at different hops. Specifically, we introduce a Gaussian model that utilizes a learnable "meta-representation" as a condition to estimate the expectation and variance of multi-hop propagated features via neural networks. In this way, the "meta representation" captures the semantic and structural information underlying multiple propagated features but is naturally less susceptible to interference by noise, thereby serving as high-quality node representations beneficial for downstream tasks. Extensive experiments on multiple real-world datasets demonstrate that MQE in learning reliable node representations in scenarios with diverse types of feature noise.
Abstract:Recommender systems are pivotal in enhancing user experiences across various web applications by analyzing the complicated relationships between users and items. Knowledge graphs(KGs) have been widely used to enhance the performance of recommender systems. However, KGs are known to be noisy and incomplete, which are hard to provide reliable explanations for recommendation results. An explainable recommender system is crucial for the product development and subsequent decision-making. To address these challenges, we introduce a novel recommender that synergies Large Language Models (LLMs) and KGs to enhance the recommendation and provide interpretable results. Specifically, we first harness the power of LLMs to augment KG reconstruction. LLMs comprehend and decompose user reviews into new triples that are added into KG. In this way, we can enrich KGs with explainable paths that express user preferences. To enhance the recommendation on augmented KGs, we introduce a novel subgraph reasoning module that effectively measures the importance of nodes and discovers reasoning for recommendation. Finally, these reasoning paths are fed into the LLMs to generate interpretable explanations of the recommendation results. Our approach significantly enhances both the effectiveness and interpretability of recommender systems, especially in cross-selling scenarios where traditional methods falter. The effectiveness of our approach has been rigorously tested on four open real-world datasets, with our methods demonstrating a superior performance over contemporary state-of-the-art techniques by an average improvement of 12%. The application of our model in a multinational engineering and technology company cross-selling recommendation system further underscores its practical utility and potential to redefine recommendation practices through improved accuracy and user trust.