Abstract:LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
Abstract:Liver fibrosis poses a substantial challenge in clinical practice, emphasizing the necessity for precise liver segmentation and accurate disease staging. Based on the CARE Liver 2025 Track 4 Challenge, this study introduces a multi-task deep learning framework developed for liver segmentation (LiSeg) and liver fibrosis staging (LiFS) using multiparametric MRI. The LiSeg phase addresses the challenge of limited annotated images and the complexities of multi-parametric MRI data by employing a semi-supervised learning model that integrates image segmentation and registration. By leveraging both labeled and unlabeled data, the model overcomes the difficulties introduced by domain shifts and variations across modalities. In the LiFS phase, we employed a patchbased method which allows the visualization of liver fibrosis stages based on the classification outputs. Our approach effectively handles multimodality imaging data, limited labels, and domain shifts. The proposed method has been tested by the challenge organizer on an independent test set that includes in-distribution (ID) and out-of-distribution (OOD) cases using three-channel MRIs (T1, T2, DWI) and seven-channel MRIs (T1, T2, DWI, GED1-GED4). The code is freely available. Github link: https://github.com/mileywang3061/Care-Liver
Abstract:Prompt design significantly impacts the moral competence and safety alignment of large language models (LLMs), yet empirical comparisons remain fragmented across datasets and models.We introduce ProMoral-Bench, a unified benchmark evaluating 11 prompting paradigms across four LLM families. Using ETHICS, Scruples, WildJailbreak, and our new robustness test, ETHICS-Contrast, we measure performance via our proposed Unified Moral Safety Score (UMSS), a metric balancing accuracy and safety. Our results show that compact, exemplar-guided scaffolds outperform complex multi-stage reasoning, providing higher UMSS scores and greater robustness at a lower token cost. While multi-turn reasoning proves fragile under perturbations, few-shot exemplars consistently enhance moral stability and jailbreak resistance. ProMoral-Bench establishes a standardized framework for principled, cost-effective prompt engineering.
Abstract:Complex tables with multi-level headers, merged cells and heterogeneous layouts pose persistent challenges for LLMs in both understanding and reasoning. Existing approaches typically rely on table linearization or normalized grid modeling. However, these representations struggle to explicitly capture hierarchical structures and cross-dimensional dependencies, which can lead to misalignment between structural semantics and textual representations for non-standard tables. To address this issue, we propose an Orthogonal Hierarchical Decomposition (OHD) framework that constructs structure-preserving input representations of complex tables for LLMs. OHD introduces an Orthogonal Tree Induction (OTI) method based on spatial--semantic co-constraints, which decomposes irregular tables into a column tree and a row tree to capture vertical and horizontal hierarchical dependencies, respectively. Building on this representation, we design a dual-pathway association protocol to symmetrically reconstruct semantic lineage of each cell, and incorporate an LLM as a semantic arbitrator to align multi-level semantic information. We evaluate OHD framework on two complex table question answering benchmarks, AITQA and HiTab. Experimental results show that OHD consistently outperforms existing representation paradigms across multiple evaluation metrics.
Abstract:While Text-to-SQL remains the dominant approach for database interaction, real-world analytics increasingly require the flexibility of general-purpose programming languages such as Python or Pandas to manage file-based data and complex analytical workflows. Despite this growing need, the reliability of Text-to-Python in core data retrieval remains underexplored relative to the mature SQL ecosystem. To address this gap, we introduce BIRD-Python, a benchmark designed for cross-paradigm evaluation. We systematically refined the original dataset to reduce annotation noise and align execution semantics, thereby establishing a consistent and standardized baseline for comparison. Our analysis reveals a fundamental paradigmatic divergence: whereas SQL leverages implicit DBMS behaviors through its declarative structure, Python requires explicit procedural logic, making it highly sensitive to underspecified user intent. To mitigate this challenge, we propose the Logic Completion Framework (LCF), which resolves ambiguity by incorporating latent domain knowledge into the generation process. Experimental results show that (1) performance differences primarily stem from missing domain context rather than inherent limitations in code generation, and (2) when these gaps are addressed, Text-to-Python achieves performance parity with Text-to-SQL. These findings establish Python as a viable foundation for analytical agents-provided that systems effectively ground ambiguous natural language inputs in executable logical specifications. Resources are available at https://anonymous.4open.science/r/Bird-Python-43B7/.
Abstract:Longitudinal information in radiology reports refers to the sequential tracking of findings across multiple examinations over time, which is crucial for monitoring disease progression and guiding clinical decisions. Many recent automated radiology report generation methods are designed to capture longitudinal information; however, validating their performance is challenging. There is no proper tool to consistently label temporal changes in both ground-truth and model-generated texts for meaningful comparisons. Existing annotation methods are typically labor-intensive, relying on the use of manual lexicons and rules. Complex rules are closed-source, domain specific and hard to adapt, whereas overly simple ones tend to miss essential specialised information. Large language models (LLMs) offer a promising annotation alternative, as they are capable of capturing nuanced linguistic patterns and semantic similarities without extensive manual intervention. They also adapt well to new contexts. In this study, we therefore propose an LLM-based pipeline to automatically annotate longitudinal information in radiology reports. The pipeline first identifies sentences containing relevant information and then extracts the progression of diseases. We evaluate and compare five mainstream LLMs on these two tasks using 500 manually annotated reports. Considering both efficiency and performance, Qwen2.5-32B was subsequently selected and used to annotate another 95,169 reports from the public MIMIC-CXR dataset. Our Qwen2.5-32B-annotated dataset provided us with a standardized benchmark for evaluating report generation models. Using this new benchmark, we assessed seven state-of-the-art report generation models. Our LLM-based annotation method outperforms existing annotation solutions, achieving 11.3\% and 5.3\% higher F1-scores for longitudinal information detection and disease tracking, respectively.
Abstract:Large language models (LLMs) increasingly operate in high-stakes settings including healthcare and medicine, where demographic attributes such as race and ethnicity may be explicitly stated or implicitly inferred from text. However, existing studies primarily document outcome-level disparities, offering limited insight into internal mechanisms underlying these effects. We present a mechanistic study of how race and ethnicity are represented and operationalized within LLMs. Using two publicly available datasets spanning toxicity-related generation and clinical narrative understanding tasks, we analyze three open-source models with a reproducible interpretability pipeline combining probing, neuron-level attribution, and targeted intervention. We find that demographic information is distributed across internal units with substantial cross-model variation. Although some units encode sensitive or stereotype-related associations from pretraining, identical demographic cues can induce qualitatively different behaviors. Interventions suppressing such neurons reduce bias but leave substantial residual effects, suggesting behavioral rather than representational change and motivating more systematic mitigation.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) is highly effective for enhancing LLM reasoning, yet recent evidence shows models like Qwen 2.5 achieve significant gains even with spurious or incorrect rewards. We investigate this phenomenon and identify a "Perplexity Paradox": spurious RLVR triggers a divergence where answer-token perplexity drops while prompt-side coherence degrades, suggesting the model is bypassing reasoning in favor of memorization. Using Path Patching, Logit Lens, JSD analysis, and Neural Differential Equations, we uncover a hidden Anchor-Adapter circuit that facilitates this shortcut. We localize a Functional Anchor in the middle layers (L18-20) that triggers the retrieval of memorized solutions, followed by Structural Adapters in later layers (L21+) that transform representations to accommodate the shortcut signal. Finally, we demonstrate that scaling specific MLP keys within this circuit allows for bidirectional causal steering-artificially amplifying or suppressing contamination-driven performance. Our results provide a mechanistic roadmap for identifying and mitigating data contamination in RLVR-tuned models. Code is available at https://github.com/idwts/How-RLVR-Activates-Memorization-Shortcuts.
Abstract:Deep Research Systems (DRS) aim to help users search the web, synthesize information, and deliver comprehensive investigative reports. However, how to rigorously evaluate these systems remains under-explored. Existing deep-research benchmarks often fall into two failure modes. Some do not adequately test a system's ability to analyze evidence and write coherent reports. Others rely on evaluation criteria that are either overly coarse or directly defined by LLMs (or both), leading to scores that can be biased relative to human experts and are hard to verify or interpret. To address these issues, we introduce Deep Research Bench II, a new benchmark for evaluating DRS-generated reports. It contains 132 grounded research tasks across 22 domains; for each task, a system must produce a long-form research report that is evaluated by a set of 9430 fine-grained binary rubrics in total, covering three dimensions: information recall, analysis, and presentation. All rubrics are derived from carefully selected expert-written investigative articles and are constructed through a four-stage LLM+human pipeline that combines automatic extraction with over 400 human-hours of expert review, ensuring that the criteria are atomic, verifiable, and aligned with human expert judgment. We evaluate several state-of-the-art deep-research systems on Deep Research Bench II and find that even the strongest models satisfy fewer than 50% of the rubrics, revealing a substantial gap between current DRSs and human experts.




Abstract:Aim: This study investigates treatment response prediction to neoadjuvant chemotherapy (NACT) in breast cancer patients, using longitudinal contrast-enhanced magnetic resonance images (CE-MRI) and clinical data. The goal is to develop machine learning (ML) models to predict pathologic complete response (PCR binary classification) and 5-year relapse-free survival status (RFS binary classification). Method: The proposed framework includes tumour segmentation, image registration, feature extraction, and predictive modelling. Using the image registration method, MRI image features can be extracted and compared from the original tumour site at different time points, therefore monitoring the intratumor changes during NACT process. Four feature extractors, including one radiomics and three deep learning-based (MedicalNet, Segformer3D, SAM-Med3D) were implemented and compared. In combination with three feature selection methods and four ML models, predictive models are built and compared. Results: The proposed image registration-based feature extraction consistently improves the predictive models. In the PCR and RFS classification tasks logistic regression model trained on radiomic features performed the best with an AUC of 0.88 and classification accuracy of 0.85 for PCR classification, and AUC of 0.78 and classification accuracy of 0.72 for RFS classification. Conclusions: It is evidenced that the image registration method has significantly improved performance in longitudinal feature learning in predicting PCR and RFS. The radiomics feature extractor is more effective than the pre-trained deep learning feature extractors, with higher performance and better interpretability.