Stylistic headline generation is the task to generate a headline that not only summarizes the content of an article, but also reflects a desired style that attracts users. As style-specific article-headline pairs are scarce, previous researches focus on unsupervised approaches with a standard headline generation dataset and mono-style corpora. In this work, we follow this line and propose StyleBART, an unsupervised approach for stylistic headline generation. Our method decorates the pretrained BART model with adapters that are responsible for different styles and allows the generation of headlines with diverse styles by simply switching the adapters. Different from previous works, StyleBART separates the task of style learning and headline generation, making it possible to freely combine the base model and the style adapters during inference. We further propose an inverse paraphrasing task to enhance the style adapters. Extensive automatic and human evaluations show that StyleBART achieves new state-of-the-art performance in the unsupervised stylistic headline generation task, producing high-quality headlines with the desired style.
The ability to navigate robots with natural language instructions in an unknown environment is a crucial step for achieving embodied artificial intelligence (AI). With the improving performance of deep neural models proposed in the field of vision-and-language navigation (VLN), it is equally interesting to know what information the models utilize for their decision-making in the navigation tasks. To understand the inner workings of deep neural models, various explanation methods have been developed for promoting explainable AI (XAI). But they are mostly applied to deep neural models for image or text classification tasks and little work has been done in explaining deep neural models for VLN tasks. In this paper, we address these problems by building quantitative benchmarks to evaluate explanation methods for VLN models in terms of faithfulness. We propose a new erasure-based evaluation pipeline to measure the step-wise textual explanation in the sequential decision-making setting. We evaluate several explanation methods for two representative VLN models on two popular VLN datasets and reveal valuable findings through our experiments.
Instruction tuning has been demonstrated that could significantly improve the zero-shot generalization capability to unseen tasks by an apparent margin. By incorporating additional context (e.g., task definition, examples) during the fine-tuning process, Large Language Models (LLMs) achieved much higher performance than before. However, recent work reported that delusive task examples can achieve almost the same performance as correct task examples, indicating the input-label correspondence is less important than previously thought. Intrigued by this counter-intuitive observation, we suspect models have the same illusion of competence as humans. Therefore, we propose a novel method called TADIS that steers LLMs for "Deep-Thinking'' about demonstration examples instead of merely seeing. To alleviate the illusion of competence of models, we first ask the model to verify the correctness of shown examples. Then, using the verification results as conditions to elicit models for a better answer. Our experimental results show that TADIS consistently outperforms competitive baselines on in-domain and out-domain tasks (improving 2.79 and 4.03 average ROUGLE-L on out-domain and in-domain datasets, respectively). Despite the presence of generated examples (not all of the thinking labels are accurate), TADIS can notably enhance performance in zero-shot and few-shot settings. This also suggests that our approach can be adopted on a large scale to improve the instruction following capabilities of models without any manual labor. Moreover, we construct three types of thinking labels with different model sizes and find that small models learn from the format of TADIS but larger models can be steered for "Deep-Thinking''.
Multilingual pretrained language models (mPLMs) have shown their effectiveness in multilingual word alignment induction. However, these methods usually start from mBERT or XLM-R. In this paper, we investigate whether multilingual sentence Transformer LaBSE is a strong multilingual word aligner. This idea is non-trivial as LaBSE is trained to learn language-agnostic sentence-level embeddings, while the alignment extraction task requires the more fine-grained word-level embeddings to be language-agnostic. We demonstrate that the vanilla LaBSE outperforms other mPLMs currently used in the alignment task, and then propose to finetune LaBSE on parallel corpus for further improvement. Experiment results on seven language pairs show that our best aligner outperforms previous state-of-the-art models of all varieties. In addition, our aligner supports different language pairs in a single model, and even achieves new state-of-the-art on zero-shot language pairs that does not appear in the finetuning process.
Medical treatments tailored to a patient's baseline characteristics hold the potential of improving patient outcomes while reducing negative side effects. Learning individualized treatment rules (ITRs) often requires aggregation of multiple datasets(sites); however, current ITR methodology does not take between-site heterogeneity into account, which can hurt model generalizability when deploying back to each site. To address this problem, we develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs while borrowing information about feature sign-coherency via a scientifically-motivated directionality principle. We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem. We study the proposed methods through numerical experiments to understand their performance under different levels of between-site heterogeneity and apply the methodology to estimate ITRs in a large multi-center database of electronic health records. This work extends several popular methodologies for estimating ITRs (A-learning, weighted learning) to the multiple-sites setting.
We study the problem of learning individualized dose intervals using observational data. There are very few previous works for policy learning with continuous treatment, and all of them focused on recommending an optimal dose rather than an optimal dose interval. In this paper, we propose a new method to estimate such an optimal dose interval, named probability dose interval (PDI). The potential outcomes for doses in the PDI are guaranteed better than a pre-specified threshold with a given probability (e.g., 50%). The associated nonconvex optimization problem can be efficiently solved by the Difference-of-Convex functions (DC) algorithm. We prove that our estimated policy is consistent, and its risk converges to that of the best-in-class policy at a root-n rate. Numerical simulations show the advantage of the proposed method over outcome modeling based benchmarks. We further demonstrate the performance of our method in determining individualized Hemoglobin A1c (HbA1c) control intervals for elderly patients with diabetes.
This paper demonstrates that multilingual pretraining, a proper fine-tuning method and a large-scale parallel dataset from multiple auxiliary languages are all critical for zero-shot translation, where the NMT model is tested on source languages unseen during supervised training. Following this idea, we present SixT++, a strong many-to-English NMT model that supports 100 source languages but is trained once with a parallel dataset from only six source languages. SixT++ initializes the decoder embedding and the full encoder with XLM-R large, and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT++ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT++ offers a set of model parameters that can be further fine-tuned to develop unsupervised NMT models for low-resource languages. With back-translation on monolingual data of low-resource language, it outperforms all current state-of-the-art unsupervised methods on Nepali and Sinhal for both translating into and from English.
Learning individualized treatment rules (ITRs) is an important topic in precision medicine. Current literature mainly focuses on deriving ITRs from a single source population. We consider the observational data setting when the source population differs from a target population of interest. We assume subject covariates are available from both populations, but treatment and outcome data are only available from the source population. Although adjusting for differences between source and target populations can potentially lead to an improved ITR for the target population, it can substantially increase the variability in ITR estimation. To address this dilemma, we develop a weighting framework that aims to tailor an ITR for a given target population and protect against high variability due to superfluous covariate shift adjustments. Our method seeks covariate balance over a nonparametric function class characterized by a reproducing kernel Hilbert space and can improve many ITR learning methods that rely on weights. We show that the proposed method encompasses importance weights and the so-called overlap weights as two extreme cases, allowing for a better bias-variance trade-off in between. Numerical examples demonstrate that the use of our weighting method can greatly improve ITR estimation for the target population compared with other weighting methods.
Previous works mainly focus on improving cross-lingual transfer for NLU tasks with multilingual pretrained encoder (MPE), or improving the translation performance on NMT task with BERT. However, how to improve the cross-lingual transfer of NMT model with multilingual pretrained encoder is under-explored. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with one parallel dataset and an off-the-shelf MPE, then is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. The SixT model leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. The extensive experiments prove that SixT significantly improves the translation quality of the unseen languages. With much less computation cost and training data, our model achieves better performance on many-to-English testsets than CRISS and m2m-100, two strong multilingual NMT baselines.
Despite its original goal to jointly learn to align and translate, prior researches suggest that the state-of-the-art neural machine translation model Transformer captures poor word alignment through its attention mechanism. In this paper, we show that attention weights do capture accurate word alignment, which could only be revealed if we choose the correct decoding step and layer to induce word alignment. We propose to induce alignment with the to-be-aligned target token as the decoder input and present two simple but effective interpretation methods for word alignment induction, either through the attention weights or the leave-one-out measures. In contrast to previous studies, we find that attention weights capture better word alignment than the leave-one-out measures under our setting. Using the proposed method with attention weights, we greatly improve over fast-align on word alignment induction. Finally, we present a multi-task learning framework to train the Transformer model and show that by incorporating GIZA++ alignments into our multi-task training, we can induce significantly better alignments than GIZA++.