George Mason University
Abstract:Correctness alone is insufficient: LLM-generated programs frequently satisfy unit tests while violating contest time or memory budgets. We present SwiftSolve, a complexity-aware multi-agent system for competitive programming that couples algorithmic planning with empirical profiling and complexity-guided repair. We frame competitive programming as a software environment where specialized agents act as programmers, each assuming roles such as planning, coding, profiling, and complexity analysis. A Planner proposes an algorithmic sketch; a deterministic Static Pruner filters high-risk plans; a Coder emits ISO C++17; a Profiler compiles and executes candidates on a fixed input-size schedule to record wall time and peak memory; and a Complexity Analyst fits log-log growth (s, R2) with an LLM fallback to assign a complexity class and dispatch targeted patches to either the Planner or Coder. Agents communicate via typed, versioned JSON; a controller enforces iteration caps and diminishing returns stopping. Evaluated on 26 problems (16 BigO, 10 Codeforces Div. 2) in a POSIX sandbox (2 s / 256-512 MB), SwiftSolve attains pass@1 = 61.54% (16/26) on the first attempt and Solved@<=3 = 80.77% with marginal latency change (mean 11.96 s to 12.66 s per attempt). Aggregate run-level success is 73.08% at 12.40 s mean. Failures are predominantly resource-bound, indicating inefficiency rather than logic errors. Against Claude Opus 4, SwiftSolve improves run-level success (73.1% vs 52.6%) at approximately 2x runtime overhead (12.4 s vs 6.8 s). Beyond correctness (pass@k), we report efficiency metrics (eff@k for runtime and memory, incidence of TLE or MLE, and complexity fit accuracy on BigO), demonstrating that profiling and complexity-guided replanning reduce inefficiency while preserving accuracy.
Abstract:Swarm robotics has potential for a wide variety of applications, but real-world deployments remain rare due to the difficulty of predicting emergent behaviors arising from simple local interactions. Traditional engineering approaches design controllers to achieve desired macroscopic outcomes under idealized conditions, while agent-based and artificial life studies explore emergent phenomena in a bottom-up, exploratory manner. In this work, we introduce Analytical Swarm Chemistry, a framework that integrates concepts from engineering, agent-based and artificial life research, and chemistry. This framework combines macrostate definitions with phase diagram analysis to systematically explore how swarm parameters influence emergent behavior. Inspired by concepts from chemistry, the framework treats parameters like thermodynamic variables, enabling visualization of regions in parameter space that give rise to specific behaviors. Applying this framework to agents with minimally viable capabilities, we identify sufficient conditions for behaviors such as milling and diffusion and uncover regions of the parameter space that reliably produce these behaviors. Preliminary validation on real robots demonstrates that these regions correspond to observable behaviors in practice. By providing a principled, interpretable approach, this framework lays the groundwork for predictable and reliable emergent behavior in real-world swarm systems.
Abstract:Large Language Models (LLMs) suffer significant performance degradation in multi-turn conversations when information is presented incrementally. Given that multi-turn conversations characterize everyday interactions with LLMs, this degradation poses a severe challenge to real world usability. We hypothesize that abrupt increases in model uncertainty signal misalignment in multi-turn LLM interactions, and we exploit this insight to dynamically realign conversational context. We introduce ERGO (Entropy-guided Resetting for Generation Optimization), which continuously quantifies internal uncertainty via Shannon entropy over next token distributions and triggers adaptive prompt consolidation when a sharp spike in entropy is detected. By treating uncertainty as a first class signal rather than a nuisance to eliminate, ERGO embraces variability in language and modeling, representing and responding to uncertainty. In multi-turn tasks with incrementally revealed instructions, ERGO yields a 56.6% average performance gain over standard baselines, increases aptitude (peak performance capability) by 24.7%, and decreases unreliability (variability in performance) by 35.3%, demonstrating that uncertainty aware interventions can improve both accuracy and reliability in conversational AI.




Abstract:We stress test monitoring systems for detecting covert misbehavior in autonomous LLM agents (e.g., secretly sharing private information). To this end, we systematize a monitor red teaming (MRT) workflow that incorporates: (1) varying levels of agent and monitor situational awareness; (2) distinct adversarial strategies to evade the monitor, such as prompt injection; and (3) two datasets and environments -- SHADE-Arena for tool-calling agents and our new CUA-SHADE-Arena, which extends TheAgentCompany, for computer-use agents. We run MRT on existing LLM monitor scaffoldings, which orchestrate LLMs and parse agent trajectories, alongside a new hybrid hierarchical-sequential scaffolding proposed in this work. Our empirical results yield three key findings. First, agent awareness dominates monitor awareness: an agent's knowledge that it is being monitored substantially degrades the monitor's reliability. On the contrary, providing the monitor with more information about the agent is less helpful than expected. Second, monitor scaffolding matters more than monitor awareness: the hybrid scaffolding consistently outperforms baseline monitor scaffolding, and can enable weaker models to reliably monitor stronger agents -- a weak-to-strong scaling effect. Third, in a human-in-the-loop setting where humans discuss with the LLM monitor to get an updated judgment for the agent's behavior, targeted human oversight is most effective; escalating only pre-flagged cases to human reviewers improved the TPR by approximately 15% at FPR = 0.01. Our work establishes a standard workflow for MRT, highlighting the lack of adversarial robustness for LLMs and humans when monitoring and detecting agent misbehavior. We release code, data, and logs to spur further research.
Abstract:Multilingual riddle generation challenges large language models (LLMs) to balance cultural fluency with creative abstraction. Standard prompting strategies -- zero-shot, few-shot, chain-of-thought -- tend to reuse memorized riddles or perform shallow paraphrasing. We introduce Adaptive Originality Filtering (AOF), a prompting framework that filters redundant generations using cosine-based similarity rejection, while enforcing lexical novelty and cross-lingual fidelity. Evaluated across three LLMs and four language pairs, AOF-enhanced GPT-4o achieves \texttt{0.177} Self-BLEU and \texttt{0.915} Distinct-2 in Japanese, signaling improved lexical diversity and reduced redundancy compared to other prompting methods and language pairs. Our findings show that semantic rejection can guide culturally grounded, creative generation without task-specific fine-tuning.
Abstract:Theory of Mind (ToM), the ability to understand the mental states of oneself and others, remains a challenging area for large language models (LLMs), which often fail to predict human mental states accurately. In this paper, we introduce UniToMBench, a unified benchmark that integrates the strengths of SimToM and TOMBENCH to systematically improve and assess ToM capabilities in LLMs by integrating multi-interaction task designs and evolving story scenarios. Supported by a custom dataset of over 1,000 hand-written scenarios, UniToMBench combines perspective-taking techniques with diverse evaluation metrics to better stimulate social cognition in LLMs. Through evaluation, we observe that while models like GPT-4o and GPT-4o Mini show consistently high accuracy in tasks involving emotional and belief-related scenarios, with results usually above 80%, there is significant variability in their performance across knowledge-based tasks. These results highlight both the strengths and limitations of current LLMs in ToM-related tasks, underscoring the value of UniToMBench as a comprehensive tool for future development. Our code is publicly available here: https://github.com/Shamant/unifiedtombenchmark.




Abstract:We present Distill CLIP (DCLIP), a fine-tuned variant of the CLIP model that enhances multimodal image-text retrieval while preserving the original model's strong zero-shot classification capabilities. CLIP models are typically constrained by fixed image resolutions and limited context, which can hinder their effectiveness in retrieval tasks that require fine-grained cross-modal understanding. DCLIP addresses these challenges through a meta teacher-student distillation framework, where a cross-modal transformer teacher is fine-tuned to produce enriched embeddings via bidirectional cross-attention between YOLO-extracted image regions and corresponding textual spans. These semantically and spatially aligned global representations guide the training of a lightweight student model using a hybrid loss that combines contrastive learning and cosine similarity objectives. Despite being trained on only ~67,500 samples curated from MSCOCO, Flickr30k, and Conceptual Captions-just a fraction of CLIP's original dataset-DCLIP significantly improves image-text retrieval metrics (Recall@K, MAP), while retaining approximately 94% of CLIP's zero-shot classification performance. These results demonstrate that DCLIP effectively mitigates the trade-off between task specialization and generalization, offering a resource-efficient, domain-adaptive, and detail-sensitive solution for advanced vision-language tasks. Code available at https://anonymous.4open.science/r/DCLIP-B772/README.md.




Abstract:Large Language Models (LLMs) exhibit strong conversational abilities but often generate falsehoods. Prior work suggests that the truthfulness of simple propositions can be represented as a single linear direction in a model's internal activations, but this may not fully capture its underlying geometry. In this work, we extend the concept cone framework, recently introduced for modeling refusal, to the domain of truth. We identify multi-dimensional cones that causally mediate truth-related behavior across multiple LLM families. Our results are supported by three lines of evidence: (i) causal interventions reliably flip model responses to factual statements, (ii) learned cones generalize across model architectures, and (iii) cone-based interventions preserve unrelated model behavior. These findings reveal the richer, multidirectional structure governing simple true/false propositions in LLMs and highlight concept cones as a promising tool for probing abstract behaviors.
Abstract:In an era where AI-driven hiring is transforming recruitment practices, concerns about fairness and bias have become increasingly important. To explore these issues, we introduce a benchmark, FAIRE (Fairness Assessment In Resume Evaluation), to test for racial and gender bias in large language models (LLMs) used to evaluate resumes across different industries. We use two methods-direct scoring and ranking-to measure how model performance changes when resumes are slightly altered to reflect different racial or gender identities. Our findings reveal that while every model exhibits some degree of bias, the magnitude and direction vary considerably. This benchmark provides a clear way to examine these differences and offers valuable insights into the fairness of AI-based hiring tools. It highlights the urgent need for strategies to reduce bias in AI-driven recruitment. Our benchmark code and dataset are open-sourced at our repository: https://github.com/athenawen/FAIRE-Fairness-Assessment-In-Resume-Evaluation.git.
Abstract:Large language models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing (NLP) tasks. However, these models are often difficult to deploy due to significant computational requirements and resource constraints. Knowledge distillation (KD) is an effective technique for transferring the performance of larger LLMs to smaller models. Traditional KD methods primarily focus on the direct output of the teacher model, with little emphasis on the role of prompting during knowledge transfer. In this paper, we propose a set of novel response-priming prompting strategies applied in the knowledge distillation pipeline to enhance the performance of student models. Our approach fine-tunes a smaller Llama 3.1 8B Instruct model by distilling knowledge from a quantized Llama 3.1 405B Instruct teacher model. We apply LoRA optimization and evaluate on the GSM8K benchmark. Experimental results demonstrate that integrating reasoning-eliciting prompting into the proposed KD pipeline significantly improves student model performance, offering an efficient way to deploy powerful models in resource-constrained environments. We find that Ground Truth prompting results in a 55\% performance increase on GSM8K for a distilled Llama 3.1 8B Instruct compared to the same model distilled without prompting. A thorough investigation into the self-attention layers of the student models indicates that the more successful prompted models tend to exhibit certain positive behaviors inside their attention heads which can be tied to their increased accuracy. Our implementation can be found at https://github.com/alonso130r/knowledge-distillation.