Abstract:Prompt design significantly impacts the moral competence and safety alignment of large language models (LLMs), yet empirical comparisons remain fragmented across datasets and models.We introduce ProMoral-Bench, a unified benchmark evaluating 11 prompting paradigms across four LLM families. Using ETHICS, Scruples, WildJailbreak, and our new robustness test, ETHICS-Contrast, we measure performance via our proposed Unified Moral Safety Score (UMSS), a metric balancing accuracy and safety. Our results show that compact, exemplar-guided scaffolds outperform complex multi-stage reasoning, providing higher UMSS scores and greater robustness at a lower token cost. While multi-turn reasoning proves fragile under perturbations, few-shot exemplars consistently enhance moral stability and jailbreak resistance. ProMoral-Bench establishes a standardized framework for principled, cost-effective prompt engineering.