Eric
Abstract:We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
Abstract:Data quality determines foundation model performance, yet systematic processing frameworks are lacking. We introduce Data Darwinism, a ten-level taxonomy (L0-L9) that conceptualizes data-model co-evolution: advanced models produce superior data for next-generation systems. We validate this on scientific literature by constructing Darwin-Science, a 900B-token corpus (L0-L5). We identify a learnability gap in raw scientific text, which we bridge via L4 (Generative Refinement) and L5 (Cognitive Completion) using frontier LLMs to explicate reasoning and terminology. To ensure rigorous attribution, we pre-trained daVinci-origin-3B/7B models from scratch, excluding scientific content to create contamination-free baselines. After 600B tokens of continued pre-training, Darwin-Science outperforms baselines by +2.12 (3B) and +2.95 (7B) points across 20+ benchmarks, rising to +5.60 and +8.40 points on domain-aligned tasks. Systematic progression to L5 yields a +1.36 total gain, confirming that higher-level processing unlocks latent data value. We release the Darwin-Science corpus and daVinci-origin models to enable principled, co-evolutionary development.
Abstract:Multimodal Diffusion Transformers (MMDiTs) for text-to-image generation maintain separate text and image branches, with bidirectional information flow between text tokens and visual latents throughout denoising. In this setting, we observe a prompt forgetting phenomenon: the semantics of the prompt representation in the text branch is progressively forgotten as depth increases. We further verify this effect on three representative MMDiTs--SD3, SD3.5, and FLUX.1 by probing linguistic attributes of the representations over the layers in the text branch. Motivated by these findings, we introduce a training-free approach, prompt reinjection, which reinjects prompt representations from early layers into later layers to alleviate this forgetting. Experiments on GenEval, DPG, and T2I-CompBench++ show consistent gains in instruction-following capability, along with improvements on metrics capturing preference, aesthetics, and overall text--image generation quality.
Abstract:In large language models built upon the Transformer architecture, recent studies have shown that inter-head interaction can enhance attention performance. Motivated by this, we propose Multi-head Explicit Attention (MEA), a simple yet effective attention variant that explicitly models cross-head interaction. MEA consists of two key components: a Head-level Linear Composition (HLC) module that separately applies learnable linear combinations to the key and value vectors across heads, thereby enabling rich inter-head communication; and a head-level Group Normalization layer that aligns the statistical properties of the recombined heads. MEA shows strong robustness in pretraining, which allows the use of larger learning rates that lead to faster convergence, ultimately resulting in lower validation loss and improved performance across a range of tasks. Furthermore, we explore the parameter efficiency of MEA by reducing the number of attention heads and leveraging HLC to reconstruct them using low-rank "virtual heads". This enables a practical key-value cache compression strategy that reduces KV-cache memory usage by 50% with negligible performance loss on knowledge-intensive and scientific reasoning tasks, and only a 3.59% accuracy drop for Olympiad-level mathematical benchmarks.
Abstract:Large language models have demonstrated strong reasoning capabilities in complex tasks through tool integration, which is typically framed as a Markov Decision Process and optimized with trajectory-level RL algorithms such as GRPO. However, a common class of reasoning tasks, iterative optimization, presents distinct challenges: the agent interacts with the same underlying environment state across turns, and the value of a trajectory is determined by the best turn-level reward rather than cumulative returns. Existing GRPO-based methods cannot perform fine-grained, turn-level optimization in such settings, while black-box optimization methods discard prior knowledge and reasoning capabilities. To address this gap, we propose Turn-Level GRPO (TL-GRPO), a lightweight RL algorithm that performs turn-level group sampling for fine-grained optimization. We evaluate TL-GRPO on analog circuit sizing (ACS), a challenging scientific optimization task requiring multiple simulations and domain expertise. Results show that TL-GRPO outperforms standard GRPO and Bayesian optimization methods across various specifications. Furthermore, our 30B model trained with TL-GRPO achieves state-of-the-art performance on ACS tasks under same simulation budget, demonstrating both strong generalization and practical utility.
Abstract:Large language models (LLMs) have demonstrated exceptional performance in reasoning tasks such as mathematics and coding, matching or surpassing human capabilities. However, these impressive reasoning abilities face significant challenges in specialized domains. Taking Go as an example, although AlphaGo has established the high performance ceiling of AI systems in Go, mainstream LLMs still struggle to reach even beginner-level proficiency, let alone perform natural language reasoning. This performance gap between general-purpose LLMs and domain experts is significantly limiting the application of LLMs on a wider range of domain-specific tasks. In this work, we aim to bridge the divide between LLMs' general reasoning capabilities and expert knowledge in domain-specific tasks. We perform mixed fine-tuning with structured Go expertise and general long Chain-of-Thought (CoT) reasoning data as a cold start, followed by reinforcement learning to integrate expert knowledge in Go with general reasoning capabilities. Through this methodology, we present \textbf{LoGos}, a powerful LLM that not only maintains outstanding general reasoning abilities, but also conducts Go gameplay in natural language, demonstrating effective strategic reasoning and accurate next-move prediction. LoGos achieves performance comparable to human professional players, substantially surpassing all existing LLMs. Through this work, we aim to contribute insights on applying general LLM reasoning capabilities to specialized domains. We will release the first large-scale Go dataset for LLM training, the first LLM Go evaluation benchmark, and the first general LLM that reaches human professional-level performance in Go at: https://github.com/Entarochuan/LoGos.
Abstract:As large language models (LLMs) increasingly tackle complex reasoning tasks, test-time scaling has become critical for enhancing capabilities. However, in agentic scenarios with frequent tool calls, the traditional generation-length-based definition breaks down: tool latency decouples inference time from generation length. We propose Timely Machine, redefining test-time as wall-clock time, where models dynamically adjust strategies based on time budgets. We introduce Timely-Eval, a benchmark spanning high-frequency tool calls, low-frequency tool calls, and time-constrained reasoning. By varying tool latency, we find smaller models excel with fast feedback through more interactions, while larger models dominate high-latency settings via superior interaction quality. Moreover, existing models fail to adapt reasoning to time budgets. We propose Timely-RL to address this gap. After cold-start supervised fine-tuning, we use reinforcement learning to enhance temporal planning. Timely-RL improves time budget awareness and consistently boosts performance across Timely-Eval. We hope our work offers a new perspective on test-time scaling for the agentic era.
Abstract:Long chain-of-thought (CoT) trajectories provide rich supervision signals for distilling reasoning from teacher to student LLMs. However, both prior work and our experiments show that trajectories from stronger teachers do not necessarily yield better students, highlighting the importance of data-student suitability in distillation. Existing methods assess suitability primarily through student likelihood, favoring trajectories that closely align with the model's current behavior but overlooking more informative ones. Addressing this, we propose Rank-Surprisal Ratio (RSR), a simple metric that captures both alignment and informativeness to assess the suitability of a reasoning trajectory. RSR is motivated by the observation that effective trajectories typically combine low absolute probability with relatively high-ranked tokens under the student model, balancing learning signal strength and behavioral alignment. Concretely, RSR is defined as the ratio of a trajectory's average token-wise rank to its average negative log-likelihood, and is straightforward to compute and interpret. Across five student models and reasoning trajectories from 11 diverse teachers, RSR strongly correlates with post-training performance (average Spearman 0.86), outperforming existing metrics. We further demonstrate its practical utility in both trajectory selection and teacher selection.
Abstract:Optimal configuration of the learning rate (LR) is a fundamental yet formidable challenge in large-scale pre-training. Given the stringent trade-off between training costs and model performance, the pivotal question is whether the optimal LR can be accurately extrapolated from low-cost experiments. In this paper, we formalize this investigation into two distinct research paradigms: Fitting and Transfer. Within the Fitting Paradigm, we innovatively introduce a Scaling Law for search factor, effectively reducing the search complexity from O(n^3) to O(n*C_D*C_η) via predictive modeling. Within the Transfer Paradigm, we extend the principles of $μ$Transfer to the Mixture of Experts (MoE) architecture, broadening its applicability to encompass model depth, weight decay, and token horizons. By pushing the boundaries of existing hyperparameter research in terms of scale, we conduct a comprehensive comparison between these two paradigms. Our empirical results challenge the scalability of the widely adopted $μ$ Transfer in large-scale pre-training scenarios. Furthermore, we provide a rigorous analysis through the dual lenses of training stability and feature learning to elucidate the underlying reasons why module-wise parameter tuning underperforms in large-scale settings. This work offers systematic practical guidelines and a fresh theoretical perspective for optimizing industrial-level pre-training.
Abstract:Rotary Position Embeddings (RoPE) have become a standard for encoding sequence order in Large Language Models (LLMs) by applying rotations to query and key vectors in the complex plane. Standard implementations, however, utilize only the real component of the complex-valued dot product for attention score calculation. This simplification discards the imaginary component, which contains valuable phase information, leading to a potential loss of relational details crucial for modeling long-context dependencies. In this paper, we propose an extension that re-incorporates this discarded imaginary component. Our method leverages the full complex-valued representation to create a dual-component attention score. We theoretically and empirically demonstrate that this approach enhances the modeling of long-context dependencies by preserving more positional information. Furthermore, evaluations on a suite of long-context language modeling benchmarks show that our method consistently improves performance over the standard RoPE, with the benefits becoming more significant as context length increases. The code is available at https://github.com/OpenMOSS/rope_pp.