Abstract:Can multi-modal large models (MLMs) that can ``see'' an image be said to ``understand'' it? Drawing inspiration from Searle's Chinese Room, we propose the \textbf{Visual Room} argument: a system may process and describe every detail of visual inputs by following algorithmic rules, without genuinely comprehending the underlying intention. This dilemma challenges the prevailing assumption that perceptual mastery implies genuine understanding. In implementation, we introduce a two-tier evaluation framework spanning perception and cognition. The perception component evaluates whether MLMs can accurately capture the surface-level details of visual contents, where the cognitive component examines their ability to infer sarcasm polarity. To support this framework, We further introduce a high-quality multi-modal sarcasm dataset comprising both 924 static images and 100 dynamic videos. All sarcasm labels are annotated by the original authors and verified by independent reviewers to ensure clarity and consistency. We evaluate eight state-of-the-art (SoTA) MLMs. Our results highlight three key findings: (1) MLMs perform well on perception tasks; (2) even with correct perception, models exhibit an average error rate of ~16.1\% in sarcasm understanding, revealing a significant gap between seeing and understanding; (3) error analysis attributes this gap to deficiencies in emotional reasoning, commonsense inference, and context alignment. This work provides empirical grounding for the proposed Visual Room argument and offers a new evaluation paradigm for MLMs.
Abstract:Fish have endured millions of years of evolution, and their distinct rigid-flexible body structures offer inspiration for overcoming challenges in underwater robotics, such as limited mobility, high energy consumption, and adaptability. This paper introduces SpineWave, a biomimetic robotic fish featuring a fish-spine-like rigid-flexible transition structure. The structure integrates expandable fishbone-like ribs and adjustable magnets, mimicking the stretch and recoil of fish muscles to balance rigidity and flexibility. In addition, we employed an evolutionary algorithm to optimize the hydrodynamics of the robot, achieving significant improvements in swimming performance. Real-world tests demonstrated robustness and potential for environmental monitoring, underwater exploration, and industrial inspection. These tests established SpineWave as a transformative platform for aquatic robotics.
Abstract:Evaluating the value alignment of large language models (LLMs) has traditionally relied on single-sentence adversarial prompts, which directly probe models with ethically sensitive or controversial questions. However, with the rapid advancements in AI safety techniques, models have become increasingly adept at circumventing these straightforward tests, limiting their effectiveness in revealing underlying biases and ethical stances. To address this limitation, we propose an upgraded value alignment benchmark that moves beyond single-sentence prompts by incorporating multi-turn dialogues and narrative-based scenarios. This approach enhances the stealth and adversarial nature of the evaluation, making it more robust against superficial safeguards implemented in modern LLMs. We design and implement a dataset that includes conversational traps and ethically ambiguous storytelling, systematically assessing LLMs' responses in more nuanced and context-rich settings. Experimental results demonstrate that this enhanced methodology can effectively expose latent biases that remain undetected in traditional single-shot evaluations. Our findings highlight the necessity of contextual and dynamic testing for value alignment in LLMs, paving the way for more sophisticated and realistic assessments of AI ethics and safety.