Abstract:Recent advances in reinforcement learning with verifiable, rule-based rewards have greatly enhanced the reasoning capabilities and out-of-distribution generalization of VLMs/LLMs, obviating the need for manually crafted reasoning chains. Despite these promising developments in the general domain, their translation to medical imaging remains limited. Current medical reinforcement fine-tuning (RFT) methods predominantly focus on close-ended VQA, thereby restricting the model's ability to engage in world knowledge retrieval and flexible task adaptation. More critically, these methods fall short of addressing the critical clinical demand for open-ended, reasoning-intensive decision-making. To bridge this gap, we introduce \textbf{MedCCO}, the first multimodal reinforcement learning framework tailored for medical VQA that unifies close-ended and open-ended data within a curriculum-driven RFT paradigm. Specifically, MedCCO is initially fine-tuned on a diverse set of close-ended medical VQA tasks to establish domain-grounded reasoning capabilities, and is then progressively adapted to open-ended tasks to foster deeper knowledge enhancement and clinical interpretability. We validate MedCCO across eight challenging medical VQA benchmarks, spanning both close-ended and open-ended settings. Experimental results show that MedCCO consistently enhances performance and generalization, achieving a 11.4\% accuracy gain across three in-domain tasks, and a 5.7\% improvement on five out-of-domain benchmarks. These findings highlight the promise of curriculum-guided RL in advancing robust, clinically-relevant reasoning in medical multimodal language models.
Abstract:Accurate prediction of major adverse cardiovascular events recurrence risk in acute myocardial infarction patients based on postoperative cardiac MRI and associated clinical notes is crucial for precision treatment and personalized intervention. Existing methods primarily focus on risk stratification capability while overlooking the need for intermediate robust reasoning and model interpretability in clinical practice. Moreover, end-to-end risk prediction using LLM/VLM faces significant challenges due to data limitations and modeling complexity. To bridge this gap, we propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework designed to enhance both model interpretability and predictive performance. In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories based on associated radiological findings. In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction. CardioCoT demonstrates superior performance in MACE recurrence risk prediction while providing interpretable reasoning processes, offering valuable insights for clinical decision-making.
Abstract:Whole Slide Images (WSIs) in histopathology present a significant challenge for large-scale medical image analysis due to their high resolution, large size, and complex tile relationships. Existing Multiple Instance Learning (MIL) methods, such as Graph Neural Networks (GNNs) and Transformer-based models, face limitations in scalability and computational cost. To bridge this gap, we propose the WSI-GMamba framework, which synergistically combines the relational modeling strengths of GNNs with the efficiency of Mamba, the State Space Model designed for sequence learning. The proposed GMamba block integrates Message Passing, Graph Scanning & Flattening, and feature aggregation via a Bidirectional State Space Model (Bi-SSM), achieving Transformer-level performance with 7* fewer FLOPs. By leveraging the complementary strengths of lightweight GNNs and Mamba, the WSI-GMamba framework delivers a scalable solution for large-scale WSI analysis, offering both high accuracy and computational efficiency for slide-level classification.
Abstract:Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce NovelSeek, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. NovelSeek highlights three key advantages: 1) Scalability: NovelSeek has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: NovelSeek provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: NovelSeek has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.52 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
Abstract:We explore Generalizable Tumor Segmentation, aiming to train a single model for zero-shot tumor segmentation across diverse anatomical regions. Existing methods face limitations related to segmentation quality, scalability, and the range of applicable imaging modalities. In this paper, we uncover the potential of the internal representations within frozen medical foundation diffusion models as highly efficient zero-shot learners for tumor segmentation by introducing a novel framework named DiffuGTS. DiffuGTS creates anomaly-aware open-vocabulary attention maps based on text prompts to enable generalizable anomaly segmentation without being restricted by a predefined training category list. To further improve and refine anomaly segmentation masks, DiffuGTS leverages the diffusion model, transforming pathological regions into high-quality pseudo-healthy counterparts through latent space inpainting, and applies a novel pixel-level and feature-level residual learning approach, resulting in segmentation masks with significantly enhanced quality and generalization. Comprehensive experiments on four datasets and seven tumor categories demonstrate the superior performance of our method, surpassing current state-of-the-art models across multiple zero-shot settings. Codes are available at https://github.com/Yankai96/DiffuGTS.
Abstract:Medical image re-identification (MedReID) is under-explored so far, despite its critical applications in personalized healthcare and privacy protection. In this paper, we introduce a thorough benchmark and a unified model for this problem. First, to handle various medical modalities, we propose a novel Continuous Modality-based Parameter Adapter (ComPA). ComPA condenses medical content into a continuous modality representation and dynamically adjusts the modality-agnostic model with modality-specific parameters at runtime. This allows a single model to adaptively learn and process diverse modality data. Furthermore, we integrate medical priors into our model by aligning it with a bag of pre-trained medical foundation models, in terms of the differential features. Compared to single-image feature, modeling the inter-image difference better fits the re-identification problem, which involves discriminating multiple images. We evaluate the proposed model against 25 foundation models and 8 large multi-modal language models across 11 image datasets, demonstrating consistently superior performance. Additionally, we deploy the proposed MedReID technique to two real-world applications, i.e., history-augmented personalized diagnosis and medical privacy protection. Codes and model is available at \href{https://github.com/tianyuan168326/All-in-One-MedReID-Pytorch}{https://github.com/tianyuan168326/All-in-One-MedReID-Pytorch}.
Abstract:Healthcare systems worldwide face persistent challenges in efficiency, accessibility, and personalization. Powered by modern AI technologies such as multimodal large language models and world models, Embodied AI (EmAI) represents a transformative frontier, offering enhanced autonomy and the ability to interact with the physical world to address these challenges. As an interdisciplinary and rapidly evolving research domain, "EmAI in healthcare" spans diverse fields such as algorithms, robotics, and biomedicine. This complexity underscores the importance of timely reviews and analyses to track advancements, address challenges, and foster cross-disciplinary collaboration. In this paper, we provide a comprehensive overview of the "brain" of EmAI for healthcare, wherein we introduce foundational AI algorithms for perception, actuation, planning, and memory, and focus on presenting the healthcare applications spanning clinical interventions, daily care & companionship, infrastructure support, and biomedical research. Despite its promise, the development of EmAI for healthcare is hindered by critical challenges such as safety concerns, gaps between simulation platforms and real-world applications, the absence of standardized benchmarks, and uneven progress across interdisciplinary domains. We discuss the technical barriers and explore ethical considerations, offering a forward-looking perspective on the future of EmAI in healthcare. A hierarchical framework of intelligent levels for EmAI systems is also introduced to guide further development. By providing systematic insights, this work aims to inspire innovation and practical applications, paving the way for a new era of intelligent, patient-centered healthcare.
Abstract:Accurate diagnosis of brain abnormalities is greatly enhanced by the inclusion of complementary multi-parametric MRI imaging data. There is significant potential to develop a universal pre-training model that can be quickly adapted for image modalities and various clinical scenarios. However, current models often rely on uni-modal image data, neglecting the cross-modal correlations among different image modalities or struggling to scale up pre-training in the presence of missing modality data. In this paper, we propose BrainMVP, a multi-modal vision pre-training framework for brain image analysis using multi-parametric MRI scans. First, we collect 16,022 brain MRI scans (over 2.4 million images), encompassing eight MRI modalities sourced from a diverse range of centers and devices. Then, a novel pre-training paradigm is proposed for the multi-modal MRI data, addressing the issue of missing modalities and achieving multi-modal information fusion. Cross-modal reconstruction is explored to learn distinctive brain image embeddings and efficient modality fusion capabilities. A modality-wise data distillation module is proposed to extract the essence representation of each MR image modality for both the pre-training and downstream application purposes. Furthermore, we introduce a modality-aware contrastive learning module to enhance the cross-modality association within a study. Extensive experiments on downstream tasks demonstrate superior performance compared to state-of-the-art pre-training methods in the medical domain, with Dice Score improvement of 0.28%-14.47% across six segmentation benchmarks and a consistent accuracy improvement of 0.65%-18.07% in four individual classification tasks.
Abstract:Survival analysis stands as a pivotal process in cancer treatment research, crucial for predicting patient survival rates accurately. Recent advancements in data collection techniques have paved the way for enhancing survival predictions by integrating information from multiple modalities. However, real-world scenarios often present challenges with incomplete data, particularly when dealing with censored survival labels. Prior works have addressed missing modalities but have overlooked incomplete labels, which can introduce bias and limit model efficacy. To bridge this gap, we introduce a novel framework that simultaneously handles incomplete data across modalities and censored survival labels. Our approach employs advanced foundation models to encode individual modalities and align them into a universal representation space for seamless fusion. By generating pseudo labels and incorporating uncertainty, we significantly enhance predictive accuracy. The proposed method demonstrates outstanding prediction accuracy in two survival analysis tasks on both employed datasets. This innovative approach overcomes limitations associated with disparate modalities and improves the feasibility of comprehensive survival analysis using multiple large foundation models.
Abstract:The advent of vision-language models fosters the interactive conversations between AI-enabled models and humans. Yet applying these models into clinics must deal with daunting challenges around large-scale training data, financial, and computational resources. Here we propose a cost-effective instruction learning framework for conversational pathology named as CLOVER. CLOVER only trains a lightweight module and uses instruction tuning while freezing the parameters of the large language model. Instead of using costly GPT-4, we propose well-designed prompts on GPT-3.5 for building generation-based instructions, emphasizing the utility of pathological knowledge derived from the Internet source. To augment the use of instructions, we construct a high-quality set of template-based instructions in the context of digital pathology. From two benchmark datasets, our findings reveal the strength of hybrid-form instructions in the visual question-answer in pathology. Extensive results show the cost-effectiveness of CLOVER in answering both open-ended and closed-ended questions, where CLOVER outperforms strong baselines that possess 37 times more training parameters and use instruction data generated from GPT-4. Through the instruction tuning, CLOVER exhibits robustness of few-shot learning in the external clinical dataset. These findings demonstrate that cost-effective modeling of CLOVER could accelerate the adoption of rapid conversational applications in the landscape of digital pathology.