Alert button
Picture for Nando de Freitas

Nando de Freitas

Alert button

Reinforced Self-Training (ReST) for Language Modeling

Aug 21, 2023
Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud Doucet, Orhan Firat, Nando de Freitas

Figure 1 for Reinforced Self-Training (ReST) for Language Modeling
Figure 2 for Reinforced Self-Training (ReST) for Language Modeling
Figure 3 for Reinforced Self-Training (ReST) for Language Modeling
Figure 4 for Reinforced Self-Training (ReST) for Language Modeling

Reinforcement learning from human feedback (RLHF) can improve the quality of large language model's (LLM) outputs by aligning them with human preferences. We propose a simple algorithm for aligning LLMs with human preferences inspired by growing batch reinforcement learning (RL), which we call Reinforced Self-Training (ReST). Given an initial LLM policy, ReST produces a dataset by generating samples from the policy, which are then used to improve the LLM policy using offline RL algorithms. ReST is more efficient than typical online RLHF methods because the training dataset is produced offline, which allows data reuse. While ReST is a general approach applicable to all generative learning settings, we focus on its application to machine translation. Our results show that ReST can substantially improve translation quality, as measured by automated metrics and human evaluation on machine translation benchmarks in a compute and sample-efficient manner.

* 23 pages, 16 figures 
Viaarxiv icon

AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning

Aug 07, 2023
Michaël Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray Jiang, Tom Le Paine, Richard Powell, Konrad Żołna, Julian Schrittwieser, David Choi, Petko Georgiev, Daniel Toyama, Aja Huang, Roman Ring, Igor Babuschkin, Timo Ewalds, Mahyar Bordbar, Sarah Henderson, Sergio Gómez Colmenarejo, Aäron van den Oord, Wojciech Marian Czarnecki, Nando de Freitas, Oriol Vinyals

Figure 1 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Figure 2 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Figure 3 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Figure 4 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning

StarCraft II is one of the most challenging simulated reinforcement learning environments; it is partially observable, stochastic, multi-agent, and mastering StarCraft II requires strategic planning over long time horizons with real-time low-level execution. It also has an active professional competitive scene. StarCraft II is uniquely suited for advancing offline RL algorithms, both because of its challenging nature and because Blizzard has released a massive dataset of millions of StarCraft II games played by human players. This paper leverages that and establishes a benchmark, called AlphaStar Unplugged, introducing unprecedented challenges for offline reinforcement learning. We define a dataset (a subset of Blizzard's release), tools standardizing an API for machine learning methods, and an evaluation protocol. We also present baseline agents, including behavior cloning, offline variants of actor-critic and MuZero. We improve the state of the art of agents using only offline data, and we achieve 90% win rate against previously published AlphaStar behavior cloning agent.

* 32 pages, 13 figures, previous version published as a NeurIPS 2021 workshop: https://openreview.net/forum?id=Np8Pumfoty 
Viaarxiv icon

Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

May 09, 2023
Patrick Emedom-Nnamdi, Abram L. Friesen, Bobak Shahriari, Nando de Freitas, Matt W. Hoffman

Figure 1 for Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning
Figure 2 for Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning
Figure 3 for Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning
Figure 4 for Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

Standard approaches to sequential decision-making exploit an agent's ability to continually interact with its environment and improve its control policy. However, due to safety, ethical, and practicality constraints, this type of trial-and-error experimentation is often infeasible in many real-world domains such as healthcare and robotics. Instead, control policies in these domains are typically trained offline from previously logged data or in a growing-batch manner. In this setting a fixed policy is deployed to the environment and used to gather an entire batch of new data before being aggregated with past batches and used to update the policy. This improvement cycle can then be repeated multiple times. While a limited number of such cycles is feasible in real-world domains, the quality and diversity of the resulting data are much lower than in the standard continually-interacting approach. However, data collection in these domains is often performed in conjunction with human experts, who are able to label or annotate the collected data. In this paper, we first explore the trade-offs present in this growing-batch setting, and then investigate how information provided by a teacher (i.e., demonstrations, expert actions, and gradient information) can be leveraged at training time to mitigate the sample complexity and coverage requirements for actor-critic methods. We validate our contributions on tasks from the DeepMind Control Suite.

* Reincarnating Reinforcement Learning Workshop at ICLR 2023 
Viaarxiv icon

Vision-Language Models as Success Detectors

Mar 13, 2023
Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando de Freitas, Serkan Cabi

Figure 1 for Vision-Language Models as Success Detectors
Figure 2 for Vision-Language Models as Success Detectors
Figure 3 for Vision-Language Models as Success Detectors
Figure 4 for Vision-Language Models as Success Detectors

Detecting successful behaviour is crucial for training intelligent agents. As such, generalisable reward models are a prerequisite for agents that can learn to generalise their behaviour. In this work we focus on developing robust success detectors that leverage large, pretrained vision-language models (Flamingo, Alayrac et al. (2022)) and human reward annotations. Concretely, we treat success detection as a visual question answering (VQA) problem, denoted SuccessVQA. We study success detection across three vastly different domains: (i) interactive language-conditioned agents in a simulated household, (ii) real world robotic manipulation, and (iii) "in-the-wild" human egocentric videos. We investigate the generalisation properties of a Flamingo-based success detection model across unseen language and visual changes in the first two domains, and find that the proposed method is able to outperform bespoke reward models in out-of-distribution test scenarios with either variation. In the last domain of "in-the-wild" human videos, we show that success detection on unseen real videos presents an even more challenging generalisation task warranting future work. We hope our initial results encourage further work in real world success detection and reward modelling.

Viaarxiv icon

Towards Learning Universal Hyperparameter Optimizers with Transformers

May 26, 2022
Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya Kawakami, Greg Kochanski, Arnaud Doucet, Marc'aurelio Ranzato, Sagi Perel, Nando de Freitas

Figure 1 for Towards Learning Universal Hyperparameter Optimizers with Transformers
Figure 2 for Towards Learning Universal Hyperparameter Optimizers with Transformers
Figure 3 for Towards Learning Universal Hyperparameter Optimizers with Transformers
Figure 4 for Towards Learning Universal Hyperparameter Optimizers with Transformers

Meta-learning hyperparameter optimization (HPO) algorithms from prior experiments is a promising approach to improve optimization efficiency over objective functions from a similar distribution. However, existing methods are restricted to learning from experiments sharing the same set of hyperparameters. In this paper, we introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction when trained on vast tuning data from the wild. Our extensive experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates. Compared to a Gaussian Process, the OptFormer also learns a robust prior distribution for hyperparameter response functions, and can thereby provide more accurate and better calibrated predictions. This work paves the path to future extensions for training a Transformer-based model as a general HPO optimizer.

Viaarxiv icon

A Generalist Agent

May 19, 2022
Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, Nando de Freitas

Figure 1 for A Generalist Agent
Figure 2 for A Generalist Agent
Figure 3 for A Generalist Agent
Figure 4 for A Generalist Agent

Inspired by progress in large-scale language modeling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato.

Viaarxiv icon

Shaking the foundations: delusions in sequence models for interaction and control

Oct 20, 2021
Pedro A. Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness, Jonas Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, Tom Everitt, Corentin Tallec, Emilio Parisotto, Tom Erez, Yutian Chen, Scott Reed, Marcus Hutter, Nando de Freitas, Shane Legg

Figure 1 for Shaking the foundations: delusions in sequence models for interaction and control
Figure 2 for Shaking the foundations: delusions in sequence models for interaction and control
Figure 3 for Shaking the foundations: delusions in sequence models for interaction and control
Figure 4 for Shaking the foundations: delusions in sequence models for interaction and control

The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains. One important problem class that has remained relatively elusive however is purposeful adaptive behavior. Currently there is a common perception that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions. In this report we explain where this mismatch originates, and show that it can be resolved by treating actions as causal interventions. Finally, we show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.

* DeepMind Tech Report, 16 pages, 4 figures 
Viaarxiv icon

Active Offline Policy Selection

Jun 18, 2021
Ksenia Konyushkova, Yutian Chen, Thomas Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J Mankowitz, Misha Denil, Nando de Freitas

Figure 1 for Active Offline Policy Selection
Figure 2 for Active Offline Policy Selection
Figure 3 for Active Offline Policy Selection
Figure 4 for Active Offline Policy Selection

This paper addresses the problem of policy selection in domains with abundant logged data, but with a very restricted interaction budget. Solving this problem would enable safe evaluation and deployment of offline reinforcement learning policies in industry, robotics, and healthcare domain among others. Several off-policy evaluation (OPE) techniques have been proposed to assess the value of policies using only logged data. However, there is still a big gap between the evaluation by OPE and the full online evaluation in the real environment. To reduce this gap, we introduce a novel \emph{active offline policy selection} problem formulation, which combined logged data and limited online interactions to identify the best policy. We rely on the advances in OPE to warm start the evaluation. We build upon Bayesian optimization to iteratively decide which policies to evaluate in order to utilize the limited environment interactions wisely. Many candidate policies could be proposed, thus, we focus on making our approach scalable and introduce a kernel function to model similarity between policies. We use several benchmark environments to show that the proposed approach improves upon state-of-the-art OPE estimates and fully online policy evaluation with limited budget. Additionally, we show that each component of the proposed method is important, it works well with various number and quality of OPE estimates and even with a large number of candidate policies.

Viaarxiv icon