Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Revisiting Gaussian mixture critics in off-policy reinforcement learning: a sample-based approach


Apr 22, 2022
Bobak Shahriari, Abbas Abdolmaleki, Arunkumar Byravan, Abe Friesen, Siqi Liu, Jost Tobias Springenberg, Nicolas Heess, Matt Hoffman, Martin Riedmiller


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Revisiting Gaussian mixture critic in off-policy reinforcement learning: a sample-based approach


Apr 21, 2022
Bobak Shahriari, Abbas Abdolmaleki, Arunkumar Byravan, Abe Friesen, Siqi Liu, Jost Tobias Springenberg, Nicolas Heess, Matt Hoffman, Martin Riedmiller


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On Multi-objective Policy Optimization as a Tool for Reinforcement Learning


Jun 15, 2021
Abbas Abdolmaleki, Sandy H. Huang, Giulia Vezzani, Bobak Shahriari, Jost Tobias Springenberg, Shruti Mishra, Dhruva TB, Arunkumar Byravan, Konstantinos Bousmalis, Andras Gyorgy, Csaba Szepesvari, Raia Hadsell, Nicolas Heess, Martin Riedmiller


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Critic Regularized Regression


Jun 26, 2020
Ziyu Wang, Alexander Novikov, Konrad 呕o艂na, Jost Tobias Springenberg, Scott Reed, Bobak Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, Nando de Freitas

* 23 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Acme: A Research Framework for Distributed Reinforcement Learning


Jun 01, 2020
Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov, Sergio G贸mez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, Nando de Freitas


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Making Efficient Use of Demonstrations to Solve Hard Exploration Problems


Sep 03, 2019
Tom Le Paine, Caglar Gulcehre, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan Williams, Gabriel Barth-Maron, Ziyu Wang, Nando de Freitas, Worlds Team


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Which Learning Algorithms Can Generalize Identity-Based Rules to Novel Inputs?


May 12, 2016
Paul Tupper, Bobak Shahriari

* 6 pages, accepted abstract at COGSCI 2016 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unbounded Bayesian Optimization via Regularization


Aug 14, 2015
Bobak Shahriari, Alexandre Bouchard-C么t茅, Nando de Freitas

* 9 pages, 4 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

An Entropy Search Portfolio for Bayesian Optimization


Mar 04, 2015
Bobak Shahriari, Ziyu Wang, Matthew W. Hoffman, Alexandre Bouchard-C么t茅, Nando de Freitas

* 10 pages, 5 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Heteroscedastic Treed Bayesian Optimisation


Mar 04, 2015
John-Alexander M. Assael, Ziyu Wang, Bobak Shahriari, Nando de Freitas


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>