Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Learning Joint 2D-3D Representations for Depth Completion

Dec 22, 2020
Yun Chen, Bin Yang, Ming Liang, Raquel Urtasun

* ICCV 2019 

  Access Paper or Ask Questions

Multi-Task Multi-Sensor Fusion for 3D Object Detection

Dec 22, 2020
Ming Liang, Bin Yang, Yun Chen, Rui Hu, Raquel Urtasun

* CVPR 2019 

  Access Paper or Ask Questions

HDNET: Exploiting HD Maps for 3D Object Detection

Dec 21, 2020
Bin Yang, Ming Liang, Raquel Urtasun

* Spotlight paper at 2nd Conference on Robot Learning (CoRL 2018) 

  Access Paper or Ask Questions

Deep Continuous Fusion for Multi-Sensor 3D Object Detection

Dec 20, 2020
Ming Liang, Bin Yang, Shenlong Wang, Raquel Urtasun

* ECCV 2018 

  Access Paper or Ask Questions

Recovering and Simulating Pedestrians in the Wild

Nov 16, 2020
Ze Yang, Siva Manivasagam, Ming Liang, Bin Yang, Wei-Chiu Ma, Raquel Urtasun

* CoRL 2020 

  Access Paper or Ask Questions

Perceive, Attend, and Drive: Learning Spatial Attention for Safe Self-Driving

Nov 02, 2020
Bob Wei, Mengye Ren, Wenyuan Zeng, Ming Liang, Bin Yang, Raquel Urtasun


  Access Paper or Ask Questions

V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction

Aug 17, 2020
Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, James Tu, Raquel Urtasun

* ECCV 2020 (Oral) 

  Access Paper or Ask Questions

Testing the Safety of Self-driving Vehicles by Simulating Perception and Prediction

Aug 13, 2020
Kelvin Wong, Qiang Zhang, Ming Liang, Bin Yang, Renjie Liao, Abbas Sadat, Raquel Urtasun

* ECCV 2020 

  Access Paper or Ask Questions

End-to-end Contextual Perception and Prediction with Interaction Transformer

Aug 13, 2020
Lingyun Luke Li, Bin Yang, Ming Liang, Wenyuan Zeng, Mengye Ren, Sean Segal, Raquel Urtasun

* IROS 2020 

  Access Paper or Ask Questions

RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects

Jul 28, 2020
Bin Yang, Runsheng Guo, Ming Liang, Sergio Casas, Raquel Urtasun

* ECCV 2020 

  Access Paper or Ask Questions

Learning Lane Graph Representations for Motion Forecasting

Jul 27, 2020
Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, Raquel Urtasun

* ECCV 2020 Oral 

  Access Paper or Ask Questions

PnPNet: End-to-End Perception and Prediction with Tracking in the Loop

Jun 27, 2020
Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio Casas, Raquel Urtasun

* CVPR2020 

  Access Paper or Ask Questions

FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets

Apr 03, 2020
Ming Liang, Yao Meng, Jiyu Wang, David Lubkeman, Ning Lu

* submitted to IEEE Trans. on Smart Grid 

  Access Paper or Ask Questions

Physically Realizable Adversarial Examples for LiDAR Object Detection

Apr 02, 2020
James Tu, Mengye Ren, Siva Manivasagam, Ming Liang, Bin Yang, Richard Du, Frank Cheng, Raquel Urtasun

* Accepted to CVPR 2020 

  Access Paper or Ask Questions

Identifying Unknown Instances for Autonomous Driving

Oct 24, 2019
Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang, Raquel Urtasun

* 3rd Conference on Robot Learning (CoRL 2019) 

  Access Paper or Ask Questions

Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser

May 08, 2018
Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, Jun Zhu

* CVPR 2018 

  Access Paper or Ask Questions

Adversarial Attacks and Defences Competition

Mar 31, 2018
Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, Alan Yuille, Sangxia Huang, Yao Zhao, Yuzhe Zhao, Zhonglin Han, Junjiajia Long, Yerkebulan Berdibekov, Takuya Akiba, Seiya Tokui, Motoki Abe

* 36 pages, 10 figures 

  Access Paper or Ask Questions

Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network

Nov 22, 2017
Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu, Sen Song

* 12 pages, 9 figures 

  Access Paper or Ask Questions