Abstract:Foundation models like the Segment Anything Model (SAM) show strong generalization, yet adapting them to medical images remains difficult due to domain shift, scarce labels, and the inability of Parameter-Efficient Fine-Tuning (PEFT) to exploit unlabeled data. While conventional models like U-Net excel in semi-supervised medical learning, their potential to assist a PEFT SAM has been largely overlooked. We introduce SC-SAM, a specialist-generalist framework where U-Net provides point-based prompts and pseudo-labels to guide SAM's adaptation, while SAM serves as a powerful generalist supervisor to regularize U-Net. This reciprocal guidance forms a bidirectional co-training loop that allows both models to effectively exploit the unlabeled data. Across prostate MRI and polyp segmentation benchmarks, our method achieves state-of-the-art results, outperforming other existing semi-supervised SAM variants and even medical foundation models like MedSAM, highlighting the value of specialist-generalist cooperation for label-efficient medical image segmentation. Our code is available at https://github.com/vnlvi2k3/SC-SAM.
Abstract:Deep learning has shown remarkable progress in medical image semantic segmentation, yet its success heavily depends on large-scale expert annotations and consistent data distributions. In practice, annotations are scarce, and images are collected from multiple scanners or centers, leading to mixed-domain settings with unknown domain labels and severe domain gaps. Existing semi-supervised or domain adaptation approaches typically assume either a single domain shift or access to explicit domain indices, which rarely hold in real-world deployment. In this paper, we propose a domain-invariant mixed-domain semi-supervised segmentation framework that jointly enhances data diversity and mitigates domain bias. A Copy-Paste Mechanism (CPM) augments the training set by transferring informative regions across domains, while a Cluster Maximum Mean Discrepancy (CMMD) block clusters unlabeled features and aligns them with labeled anchors via an MMD objective, encouraging domain-invariant representations. Integrated within a teacher-student framework, our method achieves robust and precise segmentation even with very few labeled examples and multiple unknown domain discrepancies. Experiments on Fundus and M&Ms benchmarks demonstrate that our approach consistently surpasses semi-supervised and domain adaptation methods, establishing a potential solution for mixed-domain semi-supervised medical image segmentation.
Abstract:Semi-supervised learning (SSL) has become a promising direction for medical image segmentation, enabling models to learn from limited labeled data alongside abundant unlabeled samples. However, existing SSL approaches for multi-modal medical imaging often struggle to exploit the complementary information between modalities due to semantic discrepancies and misalignment across MRI sequences. To address this, we propose a novel semi-supervised multi-modal framework that explicitly enhances modality-specific representations and facilitates adaptive cross-modal information fusion. Specifically, we introduce a Modality-specific Enhancing Module (MEM) to strengthen semantic cues unique to each modality via channel-wise attention, and a learnable Complementary Information Fusion (CIF) module to adaptively exchange complementary knowledge between modalities. The overall framework is optimized using a hybrid objective combining supervised segmentation loss and cross-modal consistency regularization on unlabeled data. Extensive experiments on the BraTS 2019 (HGG subset) demonstrate that our method consistently outperforms strong semi-supervised and multi-modal baselines under 1\%, 5\%, and 10\% labeled data settings, achieving significant improvements in both Dice and Sensitivity scores. Ablation studies further confirm the complementary effects of our proposed MEM and CIF in bridging cross-modality discrepancies and improving segmentation robustness under scarce supervision.
Abstract:Accurate liver segmentation in multi-phase MRI is vital for liver fibrosis assessment, yet labeled data is often scarce and unevenly distributed across imaging modalities and vendor systems. We propose a label-efficient segmentation approach that promotes cross-modality generalization under real-world conditions, where GED4 hepatobiliary-phase annotations are limited, non-contrast sequences (T1WI, T2WI, DWI) are unlabeled, and spatial misalignment and missing phases are common. Our method integrates a foundation-scale 3D segmentation backbone adapted via fine-tuning, co-training with cross pseudo supervision to leverage unlabeled volumes, and a standardized preprocessing pipeline. Without requiring spatial registration, the model learns to generalize across MRI phases and vendors, demonstrating robust segmentation performance in both labeled and unlabeled domains. Our results exhibit the effectiveness of our proposed label-efficient baseline for liver segmentation in multi-phase, multi-vendor MRI and highlight the potential of combining foundation model adaptation with co-training for real-world clinical imaging tasks.
Abstract:Localized image captioning has made significant progress with models like the Describe Anything Model (DAM), which can generate detailed region-specific descriptions without explicit region-text supervision. However, such capabilities have yet to be widely applied to specialized domains like medical imaging, where diagnostic interpretation relies on subtle regional findings rather than global understanding. To mitigate this gap, we propose MedDAM, the first comprehensive framework leveraging large vision-language models for region-specific captioning in medical images. MedDAM employs medical expert-designed prompts tailored to specific imaging modalities and establishes a robust evaluation benchmark comprising a customized assessment protocol, data pre-processing pipeline, and specialized QA template library. This benchmark evaluates both MedDAM and other adaptable large vision-language models, focusing on clinical factuality through attribute-level verification tasks, thereby circumventing the absence of ground-truth region-caption pairs in medical datasets. Extensive experiments on the VinDr-CXR, LIDC-IDRI, and SkinCon datasets demonstrate MedDAM's superiority over leading peers (including GPT-4o, Claude 3.7 Sonnet, LLaMA-3.2 Vision, Qwen2.5-VL, GPT-4Rol, and OMG-LLaVA) in the task, revealing the importance of region-level semantic alignment in medical image understanding and establishing MedDAM as a promising foundation for clinical vision-language integration.