Abstract:Automated Radiology report generation (RRG) aims at producing detailed descriptions of medical images, reducing radiologists' workload and improving access to high-quality diagnostic services. Existing encoder-decoder models only rely on visual features extracted from raw input images, which can limit the understanding of spatial structures and semantic relationships, often resulting in suboptimal text generation. To address this, we propose Anatomical Attention Alignment Network (A3Net), a framework that enhance visual-textual understanding by constructing hyper-visual representations. Our approach integrates a knowledge dictionary of anatomical structures with patch-level visual features, enabling the model to effectively associate image regions with their corresponding anatomical entities. This structured representation improves semantic reasoning, interpretability, and cross-modal alignment, ultimately enhancing the accuracy and clinical relevance of generated reports. Experimental results on IU X-Ray and MIMIC-CXR datasets demonstrate that A3Net significantly improves both visual perception and text generation quality. Our code is available at \href{https://github.com/Vinh-AI/A3Net}{GitHub}.
Abstract:Personalized news recommendation systems often struggle to effectively capture the complexity of user preferences, as they rely heavily on shallow representations, such as article titles and abstracts. To address this problem, we introduce a novel method, namely PNR-LLM, for Large Language Models for Personalized News Recommendation. Specifically, PNR-LLM harnesses the generation capabilities of LLMs to enrich news titles and abstracts, and consequently improves recommendation quality. PNR-LLM contains a novel module, News Enrichment via LLMs, which generates deeper semantic information and relevant entities from articles, transforming shallow contents into richer representations. We further propose an attention mechanism to aggregate enriched semantic- and entity-level data, forming unified user and news embeddings that reveal a more accurate user-news match. Extensive experiments on MIND datasets show that PNR-LLM outperforms state-of-the-art baselines. Moreover, the proposed data enrichment module is model-agnostic, and we empirically show that applying our proposed module to multiple existing models can further improve their performance, verifying the advantage of our design.
Abstract:Recent advancements in Large Language Models (LLMs) have shown significant potential in enhancing recommender systems. However, addressing the cold-start recommendation problem, where users lack historical data, remains a considerable challenge. In this paper, we introduce KALM4Rec (Keyword-driven Retrieval-Augmented Large Language Models for Cold-start User Recommendations), a novel framework specifically designed to tackle this problem by requiring only a few input keywords from users in a practical scenario of cold-start user restaurant recommendations. KALM4Rec operates in two main stages: candidates retrieval and LLM-based candidates re-ranking. In the first stage, keyword-driven retrieval models are used to identify potential candidates, addressing LLMs' limitations in processing extensive tokens and reducing the risk of generating misleading information. In the second stage, we employ LLMs with various prompting strategies, including zero-shot and few-shot techniques, to re-rank these candidates by integrating multiple examples directly into the LLM prompts. Our evaluation, using a Yelp restaurant dataset with user reviews from three English-speaking cities, shows that our proposed framework significantly improves recommendation quality. Specifically, the integration of in-context instructions with LLMs for re-ranking markedly enhances the performance of the cold-start user recommender system.
Abstract:In the last few decades, solar panel cleaning robots (SPCR) have been widely used for sanitizing photovoltaic (PV) panels as an effective solution for ensuring PV efficiency. However, the dynamic load generated by the SPCR during operation might have a negative impact on PV panels. To reduce these effects, this paper presents the utilization of ANSYS software to simulate multiple scenarios involving the impact of SPCR on PV panels. The simulation scenarios provided in the paper are derived from the typical movements of SPCR observed during practical operations. The simulation results show the deformation process of PV panels, and a second-order polynomial is established to describe the deformed amplitude along the centerline of PV panels. This second-order polynomial contributes to the design process of a damper system for SPCR aiming to reduce the influence of SPCR on PV panels. Moreover, the experiments are conducted to examine the correlation between the results of the simulation and the experiment.